题目:
Find the total area covered by two rectilinear rectangles in a 2D plane.
Each rectangle is defined by its bottom left corner and top right corner as shown in the figure.
Assume that the total area is never beyond the maximum possible value of int.
存在overlap的条件是min(C, G) > max(A, E) and min(D, G) > max(B, F)。
C++版:
class Solution {
public:
int computeArea(int A, int B, int C, int D, int E, int F, int G, int H) {
int overlap = 0;
if(min(C, G) > max(A, E) && min(H, D) > max(F, B))
overlap = (min(C, G) - max(A, E)) * (min(H, D) - max(F, B));
return (D - B) * (C - A) + (G - E) * (H - F) - overlap;
}
};
Java版:
public class Solution {
public int computeArea(int A, int B, int C, int D, int E, int F, int G, int H) {
int overlap = 0;
if(Math.min(C, G) > Math.max(A, E) && Math.min(D, H) > Math.max(B, F))
overlap = (Math.min(C, G) - Math.max(A, E)) * (Math.min(D, H) - Math.max(B, F));
return (C - A) * (D - B) + (H - F) * (G - E) - overlap;
}
}
Python版:
class Solution(object):
def computeArea(self, A, B, C, D, E, F, G, H):
"""
:type A: int
:type B: int
:type C: int
:type D: int
:type E: int
:type F: int
:type G: int
:type H: int
:rtype: int
"""
area1 = (D - B) * (C - A)
area2 = (G - E) * (H - F)
overlap = 0
if min(D, H) - max(B, F) > 0 and min(G, C) - max(A, E) > 0:
overlap = (min(D, H) - max(B, F)) * (min(G, C) - max(A, E))
return area1 + area2 - overlap