本题类似01背包问题,不过不同的是物品数量为不限,且没有权值,
没啥好说的,烂代码备份
#include<iostream>
#include<cstring>
using namespace std;
int main()
{
int max[100];
int min[100];
int v[100];
const int c=10;
const int n=5;
max[0]=min[0]=0;
for(int i=1;i<=c;++i)
{
max[i]=-9999;
min[i]=9999;
}
for(int i=1;i<=5;++i)
cin>>v[i];
for(int i=1;i<=c;++i)
{
for(int j=1;j<=n;++j)
{
if(i>=v[j])
{
if(max[i]<max[i-v[j]]+1)
max[i]=max[i-v[j]]+1;
if(min[i]>min[i-v[j]]+1)
min[i]=min[i-v[j]]+1;
}
}
}
cout<<max[10]<<' '<<min[10]<<endl;
}
c代表目标值,n为不同面值种类数,v[i]代表第i种面值大小
以max[i]存放目标c=i时的最大值,min[i]同理
所以可得出边界条件max[0]=min[0]=0;
目标是求满足c=v1x1+v2x2+....+vnxn (xi代表第i种面值使用的数量
的x1+x2+x3+.....+xn的最大最小值;
想到条件亦可写成c=(v1t11+v1t12+...v1t1k)+(v2t21+v2t22+...v2t2k)+.....+(vntn1+vntn2+...vntnk) (k代表无穷大,tij只取0,1
即将其转化为01背包问题求解
想到目前解动规题的时候大概都要想到以下几点:
写约束条件
写目标表达式
写边界条件
写状态方程
。。。
貌似有助于解题,恩,对我来说,大概吧。。。