例9-3 硬币问题递推解

本题类似01背包问题,不过不同的是物品数量为不限,且没有权值,

没啥好说的,烂代码备份


#include<iostream>
#include<cstring>
using namespace std;

int main()
{
	int max[100];
	int min[100];
	int v[100];

	const int c=10;
	const int n=5;

	max[0]=min[0]=0;
	for(int i=1;i<=c;++i)
	{
		max[i]=-9999;
		min[i]=9999;
	}

	for(int i=1;i<=5;++i)
		cin>>v[i];

	for(int i=1;i<=c;++i)
	{
		for(int j=1;j<=n;++j)
		{
			if(i>=v[j])
			{
				if(max[i]<max[i-v[j]]+1)
					max[i]=max[i-v[j]]+1;
				if(min[i]>min[i-v[j]]+1)
					min[i]=min[i-v[j]]+1;
			}
		}
	}
	cout<<max[10]<<' '<<min[10]<<endl;
}

c代表目标值,n为不同面值种类数,v[i]代表第i种面值大小

以max[i]存放目标c=i时的最大值,min[i]同理

所以可得出边界条件max[0]=min[0]=0;

目标是求满足c=v1x1+v2x2+....+vnxn  (xi代表第i种面值使用的数量

的x1+x2+x3+.....+xn的最大最小值;

想到条件亦可写成c=(v1t11+v1t12+...v1t1k)+(v2t21+v2t22+...v2t2k)+.....+(vntn1+vntn2+...vntnk)     (k代表无穷大,tij只取0,1

即将其转化为01背包问题求解


想到目前解动规题的时候大概都要想到以下几点:

写约束条件

写目标表达式

写边界条件

写状态方程

。。。


貌似有助于解题,恩,对我来说,大概吧。。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值