排序:
默认
按更新时间
按访问量

贝叶斯学习举例--学习分类文本

“我感兴趣的电子新闻稿”或“讨论机器学习的万维网页”。在这两种情况下,如果计算机可以精确地学习到目标概念,就可从大量在线文本文档中自动过滤出最相关的文档显示给读者。 这里描述了一个基于朴素贝叶斯分类器的文本分类的通用算法。 将要展示的朴素贝叶斯算法遵循以下的问题背景: 1、考虑实例空间X包含了...

2014-04-03 20:19:10

阅读数:1646

评论数:0

朴素贝叶斯分类器

贝叶斯定理 贝叶斯定理解决了现实生活里经常遇到的问题:已知某条件概率,如何得到两个事件交换后的概率,也就是在已知P(A|B)的情况下如何求得P(B|A)。这里先解释什么是条件概率:       表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件A的条件概率。其基本求解公式为:。...

2014-04-03 19:26:27

阅读数:3348

评论数:0

贝叶斯学习--极大后验假设学习

我们假定学习器考虑的是定义在实例空间X上的有限的假设空间H,任务是学习某个目标概念c:X→{0,1}。如通常那样,假定给予学习器某训练样例序列〈〈x1,d1,〉…〈xm,dm〉〉,其中xi为X中的某实例,di为xi的目标函数值(即di=c(xi))。为简化讨论,假定实例序列〈x1…xm〉是固定不变...

2014-04-03 17:13:18

阅读数:1830

评论数:0

贝叶斯学习--极大后验概率假设和极大似然假设

在机器学习中,通常我们感兴趣的是在给定训练数据D时,确定假设空间H中的最佳假设。 所谓最佳假设,一种办法是把它定义为在给定数据D以及H中不同假设的先验概率的有关知识条件下的最可能(most probable)假设。 贝叶斯理论提供了计算这种可能性的一种直接的方法。更精确地讲,贝叶斯法则提供了一种计...

2014-04-03 16:43:41

阅读数:3262

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭