华为云Flexus+DeepSeek征文|DeepSeek-V3/R1商用服务体验

目录

一、华为云ModelArts Studio服务

二、开通DeepSeek-V3/R1商用服务

三、DeepSeek-V3/R1商用服务使用方式

3.1 在线体验

3.2 调用 API 接口

3.2.1 创建 API Key

3.2.2 接口信息

3.2.3 代码示例

3.2.4 API 调用输出

3.2.4.1 流式输出

3.2.4.2 阻塞式输出

 四、总结


本篇文章主要介绍在华为云体验DeepSeek-V3/R1商用服务,使用非常方便,下面就来一块看下吧。

一、华为云ModelArts Studio服务

华为云ModelArts Studio服务聚焦优质大模型全场景性能精度提升,构建云上大模型一站式模型开发托管服务,践行大模型即服务MaaS(Model-as-a-Service)理念。

优势:

1. 模型全、免配置、免调优、性能优;

2. 开箱即用,一站式模型应用托管服务;

3. 资源一站式按需开通,建设周期短;

4. 多服务组合竞争力,一站式应用能力集成。

二、开通DeepSeek-V3/R1商用服务

首先,点击ModelArts Studio大模型即服务平台,进入ModelArts Studio大模型即服务平台页面,如下图所示。

图1  ModelArts Studio大模型即服务平台页面

然后,点击 ModelArts Studio控制台(如果没有账号需先注册账号),进入到服务平台,如下图所示。

图2  服务平台页面

服务平台包括:模型广场、模型体验、模型推理、模型训练、模型管理、应用中心、管理与统计等功能。 点击在线推理,进入商用服务页面,如下图所示。

图3 商用服务页面

点击需要开通的服务名称,例如: DeepSeek-V3-32K、DeepSeek-R1-32K,其中,DeepSeek-V3-32K模型是DeepSeek-V3-32K 是深度求索(DeepSeek)公司推出的高性能混合专家(MoE)架构大语言模型,参数量为671B。DeepSeek-R1-32K模型是是深度求索(DeepSeek)推出的第一代高性能推理大模型,专注于复杂推理任务(如数学、代码生成和逻辑推理),参数量为671B。

可以根据需要开通对应的模型,选择对应的模型开通服务即可,如下图所示。

图4  开通服务页面 

 

三、DeepSeek-V3/R1商用服务使用方式

3.1 在线体验

点击已开通模型的的在线体验,如下图所示。

 图5 商用服务页面

即可在线体验对应的模型,例如:DeepSeek-V3,在线体验方式如下图所示。 

图6 在线体验页面 

可以在最下方的对话框中输入你的问题,然后回车,大模型自动返回对应的回答,回答采用流式返回,如下图所示。 

图7 对话界面 

3.2 调用 API 接口

在商用服务页面点击调用说明,进入API调用说明界面,如下图所示。

图8 商用服务页面 

首先,在调用MaaS的模型服务时,需要填写API Key用于接口的鉴权认证,创建新的API Key或使用已有API Key,下面介绍下创建API Key 的方法。

3.2.1 创建 API Key

进入API Key管理页面,如下图所示。

图9 API Key 管理页面 

然后,点击创建API Key,填写标签和描述,如下所示。

图10 创建API Key 页面 

注意:创建完 API Key后,需要保存 API Key 内容。 

3.2.2 接口信息

模型接口信息如下所示。

API地址:https://api.modelarts-maas.com/v1/chat/completions
模型名称:DeepSeek-V3 或者 DeepSeek-R1

其中,API地址为调用模型的 URL。 

3.2.3 代码示例

调用代码如下所示。

# coding=utf-8

import requests
import json

if __name__ == '__main__':
    url = "https://api.modelarts-maas.com/v1/chat/completions" # API地址
    api_key = "yourApiKey"  # 把yourApiKey替换成已获取的API Key 
    
    # Send request.
    headers = {
        'Content-Type': 'application/json',
        'Authorization': f'Bearer {api_key}' 
    }
    data = {
        "model":"DeepSeek-V3", # 模型名称
        "messages": [
            {"role": "system", "content": "You are a helpful assistant."},
            {"role": "user", "content": "你好"}
        ],
        # 是否开启流式推理, 默认为False, 表示不开启流式推理
        "stream": True,
        # 在流式输出时是否展示使用的token数目。只有当stream为True时改参数才会生效。
        # "stream_options": { "include_usage": True },
        # 控制采样随机性的浮点数,值较低时模型更具确定性,值较高时模型更具创造性。"0"表示贪婪取样。默认为0.6。
        "temperature": 0.6
    }
    response = requests.post(url, headers=headers, data=json.dumps(data), verify=False)

    # Print result.
    print(response.status_code)
    print(response.text)

 如上所示,通过 requests 包的 post 方法调用 API,替换上述代码中的 api_key、模型名称,即可通过API的方式调用模型。

3.2.4 API 调用输出

API调用远程模型有两种输出方式,分别是流式输出和阻塞式输出,流式传输,顾名思义,数据以连续、不间断的流水式方式依次传输,实现高效且持续的数据流动;而阻塞式传输则采取截然不同的策略,它倾向于一次性完成所需数据的整体传输,类似于一次性搬运大批货物的操作模式。

接下来,分别看一下。

3.2.4.1 流式输出

流式输出需要将 stream 设置为 True,执行代码后输出如下所示。 

E:\code\code\CSDN>python main.py
E:\Program Files\Python313\Lib\site-packages\urllib3\connectionpool.py:1097: InsecureRequestWarning: Unverified HTTPS request is being made to host '127.0.0.1'. Adding certificate verification is strongly advised. See: https://urllib3.readthedocs.io/en/latest/advanced-usage.html#tls-warnings
  warnings.warn(
200
data: {"id":"chat-51fe4bd0d70445209fedc9de6a010dd6","object":"chat.completion.chunk","created":1746885412,"model":"DeepSeek-V3","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}],"usage":{"prompt_tokens":10,"total_tokens":10,"completion_tokens":0}}

data: {"id":"chat-51fe4bd0d70445209fedc9de6a010dd6","object":"chat.completion.chunk","created":1746885412,"model":"DeepSeek-V3","choices":[{"index":0,"delta":{"content":"你好"},"logprobs":null,"finish_reason":null}],"usage":{"prompt_tokens":10,"total_tokens":11,"completion_tokens":1}}

data: {"id":"chat-51fe4bd0d70445209fedc9de6a010dd6","object":"chat.completion.chunk","created":1746885412,"model":"DeepSeek-V3","choices":[{"index":0,"delta":{"content":"!很高兴"},"logprobs":null,"finish_reason":null}],"usage":{"prompt_tokens":10,"total_tokens":13,"completion_tokens":3}}

data: {"id":"chat-51fe4bd0d70445209fedc9de6a010dd6","object":"chat.completion.chunk","created":1746885412,"model":"DeepSeek-V3","choices":[{"index":0,"delta":{"content":"见到你"},"logprobs":null,"finish_reason":null}],"usage":{"prompt_tokens":10,"total_tokens":15,"completion_tokens":5}}

data: {"id":"chat-51fe4bd0d70445209fedc9de6a010dd6","object":"chat.completion.chunk","created":1746885412,"model":"DeepSeek-V3","choices":[{"index":0,"delta":{"content":",有什么"},"logprobs":null,"finish_reason":null}],"usage":{"prompt_tokens":10,"total_tokens":17,"completion_tokens":7}}

data: {"id":"chat-51fe4bd0d70445209fedc9de6a010dd6","object":"chat.completion.chunk","created":1746885412,"model":"DeepSeek-V3","choices":[{"index":0,"delta":{"content":"我可以帮助"},"logprobs":null,"finish_reason":null}],"usage":{"prompt_tokens":10,"total_tokens":19,"completion_tokens":9}}

data: {"id":"chat-51fe4bd0d70445209fedc9de6a010dd6","object":"chat.completion.chunk","created":1746885412,"model":"DeepSeek-V3","choices":[{"index":0,"delta":{"content":"你的吗"},"logprobs":null,"finish_reason":null}],"usage":{"prompt_tokens":10,"total_tokens":21,"completion_tokens":11}}

data: {"id":"chat-51fe4bd0d70445209fedc9de6a010dd6","object":"chat.completion.chunk","created":1746885412,"model":"DeepSeek-V3","choices":[{"index":0,"delta":{"content":"?"},"logprobs":null,"finish_reason":"stop","stop_reason":null}],"usage":{"prompt_tokens":10,"total_tokens":23,"completion_tokens":13}}

data: {"id":"chat-51fe4bd0d70445209fedc9de6a010dd6","object":"chat.completion.chunk","created":1746885412,"model":"DeepSeek-V3","choices":[],"usage":{"prompt_tokens":10,"total_tokens":23,"completion_tokens":13}}

data: [DONE]



E:\code\code\CSDN>
3.2.4.2 阻塞式输出

将 stream 修改为 False,即为阻塞式输出,执行代码后输出如下所示。

E:\code\code\CSDN>python main.py
E:\Program Files\Python313\Lib\site-packages\urllib3\connectionpool.py:1097: InsecureRequestWarning: Unverified HTTPS request is being made to host '127.0.0.1'. Adding certificate verification is strongly advised. See: https://urllib3.readthedocs.io/en/latest/advanced-usage.html#tls-warnings
  warnings.warn(
200
{"id":"chat-83efd19ff7414deba9e96128e5a09892","object":"chat.completion","created":1746885488,"model":"DeepSeek-V3","choices":[{"index":0,"message":{"role":"assistant","content":"你好!很高兴见到你,有什么我可以帮忙的吗?","reasoning_content":null,"tool_calls":[]},"logprobs":null,"finish_reason":"stop","stop_reason":null}],"usage":{"prompt_tokens":10,"total_tokens":22,"completion_tokens":12},"prompt_logprobs":null}

E:\code\code\CSDN>

大家可以根据自己的需要进行调用。 

 四、总结

通过本文对DeepSeek-V3/R1商用服务的体验,可以看到通过华为云使用DeepSeek-V3/R1非常方便,快捷,赶紧来体验下吧。

### 如何在华为云上部署和配置MQTT服务器 #### 创建华为云计算实例 为了构建MQTT服务,需先创建合适的计算资源。对于此目的,可以选用华为云提供的不同类型的云服务器实例来满足需求。例如,文章提到采用最新的Flexus云服务器X实例用于EMQX服务器的搭建[^1];而针对更大规模的消息处理,则有基于华为云耀云服务器L实例的成功案例分享[^2]。 #### 安装EMQX软件包 一旦选择了适合的硬件平台并成功启动了虚拟机之后,下一步就是安装EMQX本身。这可以通过多种方式完成,其中一种方法是利用Apt源来进行自动化安装过程。具体操作如下所示: ```bash curl -s https://assets.emqx.com/scripts/install-emqx-deb.sh | sudo bash ``` 上述脚本会自动下载适用于当前系统的EMQX版本,并将其设置为可执行状态以便后续使用[^4]。 #### 开放必要的网络端口 为了让外部设备能够顺利接入到所设立的服务当中,在防火墙规则里添加允许特定协议(如TCP)以及对应监听端口号(默认情况下为1883)的数据流进出是非常重要的一步。这部分工作通常涉及到调整安全组策略以适应实际应用场景的要求。 #### 访问与初始化管理界面 当一切准备就绪后,就可以尝试打开浏览器并通过指定地址访问EMQX自带的Web控制台——Dashboard页面了。在这里不仅可以监控集群运行状况,还能进一步定制化各项参数设定,从而更好地服务于具体的业务逻辑。 #### 测试消息传递功能 最后要做的便是验证整个架构是否正常运作。为此,可以从任意一台联网计算机发起一次简单的发布/订阅模式下的通信实验:即让两个不同的客户端分别扮演生产者角色向某个共同的主题发送数据包的同时作为消费者等待接收来自其他成员的通知信息。如果一切按计划进行的话,那么这就意味着已经成功实现了预期目标。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Muti-Agent

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值