做题感悟:这道题其实是 01 背包的变形,只是加了一个排序。
解题思路:先排序:如果不排序,就有可能结束完的时间在结束早的时间前面,这样的话结束完的时间就没法包含结束早的时间(没法更新)。把快乐度看作价值,把持续时间看作体积,不过每个物品的最大容量为结束时间(每个物品的容量不同)。既然是 01 背包那就可以用深搜来解决。
代码(01背包二维):
#include<stdio.h>
#include<iostream>
#include<map>
#include<string>
#include<string.h>
#include<stdlib.h>
#include<math.h>
#include<vector>
#include<queue>
#include<algorithm>
using namespace std ;
#define pret(a,b) memset(a,b,sizeof(a))
const int INF = 99999999 ;
const int mod = 9997 ;
const int MX= 55 ;
int dp[MX][MX] ;
struct node
{
int w,v,c ;
}T[MX] ;
bool cmp(node a,node b)
{
return a.c < b.c ;
}
int max(int x,int y)
{
return x > y ? x : y ;
}
int main()
{
int n ;
int v,c,w ;
while(~scanf("%d",&n)&&n>=0)
{
for(int i=1 ;i<=n ;i++)
scanf("%d%d%d",&T[i].w,&T[i].v,&T[i].c) ;
sort(T+1,T+n+1,cmp) ;// 以bg结束时间排序
int ans=0 ;
memset(dp,0,sizeof(dp)) ;
for(int i=1 ;i<=n ;i++)
{
v=T[i].v ;c=T[i].c ; w=T[i].w ;
for(int j=0 ;j<=c ;j++)
{
dp[i][j]=dp[i-1][j] ;
if(j>=v)
dp[i][j]=max(dp[i][j],dp[i-1][j-v]+w) ;
ans=max(dp[i][j],ans) ; // 更新最大值
}
}
printf("%d\n",ans) ;
}
return 0 ;
}
代码(01背包一维):
#include<stdio.h>
#include<iostream>
#include<map>
#include<string>
#include<string.h>
#include<stdlib.h>
#include<math.h>
#include<vector>
#include<queue>
#include<algorithm>
using namespace std ;
#define pret(a,b) memset(a,b,sizeof(a))
const int INF = 99999999 ;
const int mod = 9997 ;
const int MX= 1005 ;// 开大点
int dp[MX] ;
struct node
{
int w,v,c ;
}T[MX] ;
bool cmp(node a,node b)
{
return a.c < b.c ;
}
int max(int x,int y)
{
return x > y ? x : y ;
}
int main()
{
int n ;
int v,c,w ;
while(~scanf("%d",&n)&&n>=0)
{
for(int i=1 ;i<=n ;i++)
scanf("%d%d%d",&T[i].w,&T[i].v,&T[i].c) ;
sort(T+1,T+n+1,cmp) ;// 以bg结束时间排序
int ans=0 ;
memset(dp,0,sizeof(dp)) ;
for(int i=1 ;i<=n ;i++)
{
v=T[i].v ;c=T[i].c ; w=T[i].w ;
for(int j=c ;j>=v ;j--)
{
dp[j]=max(dp[j],dp[j-v]+w) ;
ans=max(dp[j],ans) ; // 更新最大值
}
}
printf("%d\n",ans) ;
}
return 0 ;
}