sklearn

数据预处理

缺失值

使用sklearn中preprocessing.Imputer实现对缺失值的处理。Imputer Class提供了补全缺失值的基本策略:使用一行或一列的均值,中值,出现次数最多的值,该类也允许不同缺失值的编码。

imp = Imputer(missing_values='NaN', strategy='mean', axis=0)
imp.transform(X)

无量纲化

在机器学习算法实践中,我们往往有着将不同规格的数据转换到同一规格,或不同分布的数据转换到某个特定分布的需求,这种需求统称为将数据“无量纲化”。

标准化

在许多机器学习执行前,需要对数据集进行标准化处理。因为很多算法假设数据的特征服从标准正态分布。所以如果不对数据标准化,那么算法的效果会很差。

  1. 函数scale提供了快速和简单的方法在单个数组形式的数据集上来执行标准化操作
from sklearn import preprocessing
X_scaled = preprocessing.scale(X)
  1. preprocessing模块还提供了一种使用类:StandardScaler,主要计算训练集的均值和标准差,然后应用在测试集的转换上
scaler = preprocessing.StandardScaler().fit(X)                              
scaler.transform(X) 

归一化

对不同特征维度的数据做伸缩变换,其目的是使得各个特征维度对目标函数的影响权重是一致的。

  1. 最大最小归一化
    可以把特征的取值设置到最小值和最大值之间,通常是【0,1】区间或每个特征分量的最大绝对值被缩放为单位值,这样的特征变换可以使用MinMaxScaler 或 MaxAbsScaler。
    这些变换的作用主要是为那些变动范围特别小的特征分量添加一定的鲁棒性,并且可以防止zero entries in sparse data。
min_max_scaler = preprocessing.MinMaxScaler(feature_range=(0,1))
X_train_minmax = min_max_scaler.fit_transform(X)
#上面的X上训练好的MinMaxScaler就可以通过transform函数被用到新的数据上
X_test_minmax = min_max_scaler.transform(X_test)
  1. 稀疏数据缩放
    对稀疏数据中心化处理会破坏数据的稀疏性结构,所以很少对稀疏数据中心化。但是如果特征在不同的方差下,依然需要对数据进行缩放。
    类MaxAbsScaler和方法maxabs_scale是专门用来对稀疏数据进行缩放的。
    MaxAbsScaler的工作方式和MinMaxScaler很像,但其变换方式是让训练数据处于区间【-1,1】。这可以通过把每个特征变量除以其对应的最大值来做到。这种变换要求数据集已经被centered at zero or sparse data。
max_abs_scaler=preprocessing.MaxAbsScaler()
X_train_maxabs=max_abs_scaler.fit_transform(X)
X_test_maxabs=max_abs_scaler.transform(X_test)

正则化

正则化是将单个样本缩放为单位范数的过程。当你要使用二次形式如点积或核变换运算来度量任意一对样本的相似性的时候,数据的规范化非常有用。这个步骤是向量空间模型的基础,常被用于文本分类和聚类中。
normalize方法提供了快速简单的方法来对单个array数据集进行归一化,可以选择L1或者L2范数。

preprocessing.normalize(X, norm='l2')

preprocessing模块还提供了类Normalizer,通过方法Transformer API对另一数据集执行同样的操作。

normalizer = preprocessing.Normalizer().fit(X)
normalizer.transform(X)

注:normalize和Normalizer同样适用于类似array的稠密的或者稀疏的矩阵。

对比

(1)如果对输出结果范围有要求,用归一化。
(2)如果数据较为稳定,不存在极端的最大最小值,用归一化。
(3)如果数据存在异常值和较多噪音,用标准化,可以间接通过中心化避免异常值和极端值的影响。
一般来说,建议优先使用标准化。对于输出有要求时再尝试别的方法,如归一化或者更加复杂的方法。很多方法都可以将输出范围调整到[0, 1],如果我们对于数据的分布有假设的话,更加有效的方法是使用相对应的概率密度函数来转换。

在这里插入图片描述

处理连续型变量:二值化与分段

特征二值化是对数值特征进行阈值化以得到布尔值的过程,这一过程主要是概率型的学习器提供数据预处理机制。大于阈值的值映射为1,而小于或等于阈值的值映射为0。

binarizer=preprocessing.Binarizer(threshold=10).fit(x)
binarizer.transform(x)

处理离散型变量:独热编码与哑变量

在很多情况下,特征值不是连续的值而是种类。例如,一个人可能的特征是[male, female]等等,这些特征可以用整数值来进行编码。
在scikit-learn中,将种类特征用1-of-k或者one-hot编码。预处理模块中有OneHotEncoder来对种类特征编码,通常是m个可能的种类用m个值来表示。
X_onehot = preprocessing.OneHotEncoder().fit_transform(X).toarray()
在这里插入图片描述

生成多项式特征

通常,通过考虑输入数据的非线性特征来增加模型的复杂度是很有用的。一个简单常用的方法是多项式特征,它可以得到特征的高阶和相互作用项。
PolynomialFeatures类可以用来生成多项式特征。

poly = PolynomialFeatures(2)
poly.fit_transform(X)     

上述将(X1, X2)转化为(1, X1, X2, X12, X1X2, X22)
应用范围:多样式特征常用于核方法中(SVM, 核PCA)

注:
可参考https://www.cnblogs.com/nolonely/p/7002168.html
Expected 2D array错误https://blog.csdn.net/flizhn/article/details/79252421

特征选择

Filter过滤法

方差选择法

feature_selection.VarianceThreshold
这是通过特征本身的方差来筛选特征的类。比如一个特征本身的方差很小,就表示样本在这个特征上基本没有差异,可能特征中的大多数值都一样,甚至整个特征的取值都相同,那这个特征对于样本区分没有什么作用。
所以无论接下来的特征工程要做什么,都要优先消除方差为0的特征。VarianceThreshold有重要参数threshold,表示方差的阈值,表示舍弃所有方差小于threshold的特征,不填默认为0,即删除所有的记录都相同的特征。

from sklearn.feature_selection import VarianceThreshold
selector = VarianceThreshold()
x_var = selector.fit_transform(x)  #得到除去部分方差为0后的新的特征矩阵
x_var.shape

# 取方差中位数作为阈值,看模型效果
x_var = VarianceThreshold(threshold=np.median(x.var().values)).fit_transform(x)
rfc = RandomForestClassifier(n_estimators=10,random_state=20)
cross_val_score(rfc,x_var,y,cv=5).mean()

在这里插入图片描述

卡方检验/卡方过滤

卡方过滤是专门针对离散型标签(即分类问题)的相关性过滤。卡方检验类feature_selection.chi2计算每个非负特征和标签之间的卡方统计量,并依照卡方统计量由高到低为特征排名。再结合feature_selection.SelectKBest这个可以输入”评分标准“的类来选出前K个分数最高的特征的类,我们可以借此除去最可能独立于标签,与我们分类目的无关的特征。

#相关性检验   卡方检验  用于分类,直接选取相关性较大的前300个特征
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
chi_x=SelectKBest(chi2,k=300).fit_transform(x_var,y)
chi_x.shape
#通过学习曲线来确定最佳的K值
import matplotlib.pyplot as plt
list = []
for i in range(100,390,10):
    chi_x = SelectKBest(chi2,k=i).fit_transform(x_var,y)
    me = cross_val_score(RandomForestClassifier(n_estimators=100,random_state=20),chi_x,y,cv=5).mean()
    list.append(me)
plt.plot(range(100,390,10),list)
plt.show()
# https://www.jianshu.com/p/586ba8c96a3d

从特征工程的角度,我们希望选取卡方值很大,p值小于0.05的特征,即和标签是相关联的特征。而调用SelectKBest之前,我们可以直接从chi2实例化后的模型中获得各个特征所对应的卡方值和P值

chi_val,p_val = chi2(x_var,y) #得到卡方值,和p值
k_val = x_var.shape[1]-(p_val>0.05).sum()
x_var.shape[1],k_val  #输出:(392, 392)

F检验

是用来捕捉每个特征与标签之间的线性关系的过滤方法。它即可以做回归也可以做分类,因此包含feature_selection.f_classif(F检验分类)和feature_selection.f_regression(F检验回归)两个类。其中F检验分类用于标签是离散型变量的数据,而F检验回归用于标签是连续型变量的数据。

和卡方检验一样,这两个类需要和类SelectKBest连用,并且我们也可以直接通过输出的统计量来判断我们到底要设置一个什么样的K。需要注意的是,F检验在数据服从正态分布时效果会非常稳定,因此如果使用F检验过滤,我们会先将数据转换成服从正态分布的方式。

F检验的本质是寻找两组数据之间的线性关系,其原假设是”数据不存在显著的线性关系“。它返回F值和p值两个统计量。和卡方过滤一样,我们希望选取p值小于0.05或0.01的特征,这些特征与标签时显著线性相关的,而p值大于0.05或0.01的特征则被我们认为是和标签没有显著线性关系的特征,应该被删除。

#F检验 用于分类或者回归
from sklearn.feature_selection import f_classif
f_val,p_val = f_classif(x_var,y)
k_val = x_var.shape[1] - (p_val > 0.05).sum()
k_val  #输出 392   特征数量没变

互信息法

互信息法是用来捕捉每个特征与标签之间的任意关系(包括线性和非线性关系)的过滤方法。和F检验相似,它既
可以做回归也可以做分类,并且包含两个类feature_selection.mutual_info_classif(互信息分类)和
feature_selection.mutual_info_regression(互信息回归)。这两个类的用法和参数都和F检验一模一样,不过
互信息法比F检验更加强大,F检验只能够找出线性关系,而互信息法可以找出任意关系。
互信息法不返回p值或F值类似的统计量,它返回“每个特征与目标之间的互信息量的估计”,这个估计量在[0,1]之间
取值,为0则表示两个变量独立,为1则表示两个变量完全相关。

#互信息   分类或回归
from sklearn.feature_selection import mutual_info_classif
x_mic = mutual_info_classif(x_var,y)
x_mic

总结

常用的基于过滤法的特征选择,包括方差过滤,基于卡方,F检验和互信息的相关性过滤,讲解了各个过滤的原理和面临的问题,以及怎样调这些过滤类的超参数。通常来说,建议先使用方差过滤,然后使用互信息法来捕捉相关性,不过了解各种各样的过滤方式也是必要的
在这里插入图片描述

Embedded嵌入法

嵌入法是一种让算法自己决定使用哪些特征的方法,即特征选择和算法训练同时进行。在使用嵌入法时,我们先使用某些机器学习的算法和模型进行训练,得到各个特征的权值系数,根据权值系数从大到小选择特征。这些权值系数往往代表了特征对于模型的某种贡献或某种重要性,比如决策树和树的集成模型中的feature_importances_属性,可以列出各个特征对树的建立的贡献,我们就可以基于这种贡献的评估,找出对模型建立最有用的特征。因此相比于过滤法,嵌入法的结果会更加精确到模型的效用本身,对于提高模型效力有更好的效果。并且,由于考虑特征对模型的贡献,因此无关的特征(需要相关性过滤的特征)和无区分度的特征(需要方差过滤的特征)都会因为缺乏对模型的贡献而被删除掉,可谓是过滤法的进化版。

过滤法中使用的统计量可以使用统计知识和常识来查找范围(如p值应当低于显著性水平0.05),而嵌入法中使用的权值系数却没有这样的范围可找——我们可以说,权值系数为0的特征对模型丝毫没有作用,但当大量特征都对模型有贡献且贡献不一时,我们就很难去界定一个有效的临界值。这种情况下,模型权值系数就是我们的超参数,我们或许需要学习曲线,或者根据模型本身的某些性质去判断这个超参数的最佳值究竟应该是多少。

#画学习曲线
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
from sklearn.feature_selection import SelectFromModel

data = pd.read_csv("D:/digit recognizor.csv")
x = data.iloc[:,1:]
y = data.iloc[:,0]

rfc = RandomForestClassifier(n_estimators=100,random_state=20)
rfc.fit(x,y)
thresholds = np.linspace(0,(rfc.feature_importances_).max(),20)
scores = []
for i in thresholds:
    x_emb = SelectFromModel(rfc,threshold=i).fit_transform(x,y)
    score = cross_val_score(rfc,x_emb,y,cv=5).mean()
    scores.append(score)
plt.plot(thresholds,scores)
plt.show()

Wrapper包装法

与嵌入法十分相似,它也是依赖于算法自身的选择,比如coef_属性或feature_importances_属性来完成特征选择。但不同的是,我们往往使用一个目标函数作为黑盒来帮助我们选取特征,而不是自己输入某个评估指标或统计量的阈值。包装法在初始特征集上训练评估器,并且通过coef_属性或通过feature_importances_属性获得每个特征的重要性。然后,从当前的一组特征中修剪最不重要的特征。在修剪的集合上递归地重复该过程,直到最终到达所需数量的要选择的特征。区别于过滤法和嵌入法的一次训练解决所有问题,包装法要使用特征子集进行多次训练,因此它所需要的计算成本是最高的。

# Wrapper包装法
from sklearn.feature_selection import RFE
rfc = RandomForestClassifier(n_estimators=10,random_state=20)
x_wra = RFE(rfc,n_features_to_select=300,step=50).fit_transform(x,y)
cross_val_score(rfc,x_wra,y,cv=5).mean()

降维算法

参考文档:http://www.pianshen.com/article/2556225859/

数据集拆分

在得到训练数据集时,通常我们经常会把训练数据集进一步拆分成训练集和验证集,这样有助于我们模型参数的选取。

# 作用:将数据集划分为 训练集和测试集
# 格式:train_test_split(*arrays, **options)
from sklearn.mode_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
"""
参数
---
arrays:样本数组,包含特征向量和标签

test_size:
  float-获得多大比重的测试样本 (默认:0.25)
  int - 获得多少个测试样本

train_size: 同test_size

random_state:
  int - 随机种子(种子固定,实验可复现)
  
shuffle - 是否在分割之前对数据进行洗牌(默认True)

返回
---
分割后的列表,长度=2*len(arrays), 
  (train-test split)
"""

定义模型

常用的回归:线性、决策树、SVM、KNN ;集成回归:随机森林、Adaboost、GradientBoosting、Bagging、ExtraTrees
常用的分类:线性、决策树、SVM、KNN,朴素贝叶斯;集成分类:随机森林、Adaboost、GradientBoosting、Bagging、ExtraTrees
常用聚类:k均值(K-means)、层次聚类(Hierarchical clustering)、DBSCAN

模型的常用属性和功能如下:

# 拟合模型
model.fit(X_train, y_train)
# 模型预测
model.predict(X_test)

# 获得这个模型的参数
model.get_params()
# 为模型进行打分
model.score(data_X, data_y) # 线性回归:R square; 分类问题: acc

线性回归

from sklearn.linear_model import LinearRegression
# 定义线性回归模型
model = LinearRegression(fit_intercept=True, normalize=False, 
    copy_X=True, n_jobs=1)
"""
参数
---
    fit_intercept:是否计算截距。False-模型没有截距
    normalize: 当fit_intercept设置为False时,该参数将被忽略。 如果为真,则回归前的回归系数X将通过减去平均值并除以l2-范数而归一化。
     n_jobs:指定线程数
"""

逻辑回归

from sklearn.linear_model import LogisticRegression
# 定义逻辑回归模型
model = LogisticRegression(penalty=’l2’, dual=False, tol=0.0001, C=1.0, 
    fit_intercept=True, intercept_scaling=1, class_weight=None, 
    random_state=None, solver=’liblinear’, max_iter=100, multi_class=’ovr’, 
    verbose=0, warm_start=False, n_jobs=1)

"""参数
---
    penalty:使用指定正则化项(默认:l2)
    dual: n_samples > n_features取False(默认)
    C:正则化强度的反,值越小正则化强度越大
    n_jobs: 指定线程数
    random_state:随机数生成器
    fit_intercept: 是否需要常量
"""

朴素贝叶斯算法

from sklearn import naive_bayes
model = naive_bayes.GaussianNB() # 高斯贝叶斯
model = naive_bayes.MultinomialNB(alpha=1.0, fit_prior=True, class_prior=None)
model = naive_bayes.BernoulliNB(alpha=1.0, binarize=0.0, fit_prior=True, class_prior=None)
"""
文本分类问题常用MultinomialNB
参数
---
    alpha:平滑参数
    fit_prior:是否要学习类的先验概率;false-使用统一的先验概率
    class_prior: 是否指定类的先验概率;若指定则不能根据参数调整
    binarize: 二值化的阈值,若为None,则假设输入由二进制向量组成
"""

决策树

from sklearn import tree 
model = tree.DecisionTreeClassifier(criterion=’gini’, max_depth=None, 
    min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, 
    max_features=None, random_state=None, max_leaf_nodes=None, 
    min_impurity_decrease=0.0, min_impurity_split=None,
     class_weight=None, presort=False)
"""参数
---
    criterion :特征选择准则gini/entropy
    max_depth:树的最大深度,None-尽量下分
    min_samples_split:分裂内部节点,所需要的最小样本树
    min_samples_leaf:叶子节点所需要的最小样本数
    max_features: 寻找最优分割点时的最大特征数
    max_leaf_nodes:优先增长到最大叶子节点数
    min_impurity_decrease:如果这种分离导致杂质的减少大于或等于这个值,则节点将被拆分。
"""

支持向量机SVM

from sklearn.svm import SVC
model = SVC(C=1.0, kernel=’rbf’, gamma=’auto’)
"""参数
---
    C:误差项的惩罚参数C
    gamma: 核相关系数。浮点数,If gamma is ‘auto’ then 1/n_features will be used instead.
"""

k近邻算法KNN

from sklearn import neighbors
#定义kNN分类模型
model = neighbors.KNeighborsClassifier(n_neighbors=5, n_jobs=1) # 分类
model = neighbors.KNeighborsRegressor(n_neighbors=5, n_jobs=1) # 回归
"""参数
---
    n_neighbors: 使用邻居的数目
    n_jobs:并行任务数
"""

多层感知机(神经网络)

from sklearn.neural_network import MLPClassifier
# 定义多层感知机分类算法
model = MLPClassifier(activation='relu', solver='adam', alpha=0.0001)
"""参数
---
    hidden_layer_sizes: 元祖
    activation:激活函数
    solver :优化算法{‘lbfgs’, ‘sgd’, ‘adam’}
    alpha:L2惩罚(正则化项)参数。
"""

模型评估

交叉验证

from sklearn.model_selection import cross_val_score
cross_val_score(model, X, y=None, scoring=None, cv=None, n_jobs=1)
"""参数
---
    model:拟合数据的模型
    cv : k-fold
    scoring: 打分参数-‘accuracy’、‘f1’、‘precision’、‘recall’ 、‘roc_auc’、'neg_log_loss'等等
"""

检验曲线

使用检验曲线,我们可以更加方便的改变模型参数,获取模型表现。

from sklearn.model_selection import validation_curve
train_score, test_score = validation_curve(model, X, y, param_name, param_range, cv=None, scoring=None, n_jobs=1)
"""参数
---
    model:用于fit和predict的对象
    X, y: 训练集的特征和标签
    param_name:将被改变的参数的名字
    param_range: 参数的改变范围
    cv:k-fold
   
返回值
---
   train_score: 训练集得分(array)
    test_score: 验证集得分(array)
"""

保存模型

我们可以将我们训练好的model保存到本地,或者放到线上供用户使用,那么如何保存训练好的model呢?主要有下面两种方式:

保存为pickle文件

import pickle

# 保存模型
with open('model.pickle', 'wb') as f:
    pickle.dump(model, f)

# 读取模型
with open('model.pickle', 'rb') as f:
    model = pickle.load(f)
model.predict(X_test)

sklearn自带方法joblib

from sklearn.externals import joblib

# 保存模型
joblib.dump(model, 'model.pickle')

#载入模型
model = joblib.load('model.pickle')
sklearn0.19中文文档 PDF格式高清。 .1. 广义线性模型 1.1.1. 普通最小二乘法 1.1.1.1. 普通最小二乘法复杂度 1.1.2. 岭回归 1.1.2.1. 岭回归的复杂度 1.1.2.2. 设置正则化参数:广义交叉验证 1.1.3. Lasso 1.1.3.1. 设置正则化参数 1.1.3.1.1. 使用交叉验证 1.1.3.1.2. 基于信息标准的模型选择 1.1.3.1.3. 与 SVM 的正则化参数的比较 1.1.4. 多任务 Lasso 1.1.5. 弹性网络 1.1.6. 多任务弹性网络 1.1.7. 最小角回归 1.1.8. LARS Lasso 1.1.8.1. 数学表达式 1.1.9. 正交匹配追踪法(OMP) 1.1.10. 贝叶斯回归 1.1.10.1. 贝叶斯岭回归 1.1.10.2. 主动相关决策理论 - ARD 1.1.11. logistic 回归 1.1.12. 随机梯度下降, SGD 1.1.13. Perceptron(感知器) 1.1.14. Passive Aggressive Algorithms(被动攻击算法) 1.1.15. 稳健回归(Robustness regression): 处理离群点 (outliers)和模型错误 1.1.15.1. 各种使用场景与相关概念 1.1.15.2. RANSAC: 随机抽样一致性算法(RANdom SAmple Consensus) 1.1.15.2.1. 算法细节 1.1.15.3. Theil-Sen 预估器: 广义中值估计 1.1.15.3.1. 算法理论细节 1.1.15.4. Huber 回归 1.1.15.5. 注意 1.1.16. 多项式回归:用基函数展开线性模型 1.2. 线性和二次判别分析 1.2.1. 使用线性判别分析来降维 1.2.2. LDA 和 QDA 分类器的数学公式 1.2.3. LDA 的降维数学公式 1.2.4. Shrinkage(收缩) 1.2.5. 预估算法 1.3. 内核岭回归 1.4. 支持向量机 1.4.1. 分类 1.4.1.1. 多元分类 1.4.1.2. 得分和概率 1.4.1.3. 非均衡问题 1.4.2. 回归 1.4.3. 密度估计, 异常(novelty)检测 1.4.4. 复杂度 1.4.5. 使用诀窍 1.4.6. 核函数 1.4.6.1. 自定义核 1.4.6.1.1. 使用 python 函数作为内核 1.4.6.1.2. 使用 Gram 矩阵 1.4.6.1.3. RBF 内核参数 1.4.7. 数学公式 1.4.7.1. SVC 1.4.7.2. NuSVC 1.4.7.3. SVR 1.4.8. 实现细节 1.5. 随机梯度下降 1.5.1. 分类 1.5.2. 回归 1.5.3. 稀疏数据的随机梯度下降 1.5.4. 复杂度 1.5.5. 实用小贴士 1.5.6. 数学描述 1.5.6.1. SGD 1.5.7. 实现细节 1.6. 最近邻 1.6.1. 无监督最近邻 1.6.1.1. 找到最近邻 1.6.1.2. KDTree 和 BallTree 类 1.6.2. 最近邻分类 1.6.3. 最近邻回归 1.6.4. 最近邻算法 1.6.4.1. 暴力计算 1.6.4.2. K-D 树 1.6.4.3. Ball 树 1.6.4.4. 最近邻算法的选择 1.6.4.5. leaf_size 的影响 1.6.5. 最近质心分类 1.6.5.1. 最近缩小质心 1.7. 高斯过程 1.7.1. 高斯过程回归(GPR) 1.7.2. GPR 示例 1.7.2.1. 具有噪声级的 GPR 估计 1.7.2.2. GPR 和内核岭回归(Kernel Ridge Regression)的比 较 1.7.2.3. Mauna Loa CO2 数据中的 GRR 1.7.3. 高斯过程分类(GPC) 1.7.4. GPC 示例 1.7.4.1. GPC 概率预测 1.7.4.2. GPC 在 XOR 数据集上的举例说明 1.7.4.3. iris 数据集上的高斯过程分类(GPC) 1.7.5. 高斯过程内核 1.7.5.1. 高斯过程内核 API 1.7.5.2. 基础内核 1.7.5.3. 内核操作 1.7.5.4. 径向基函数内核 1.7.5.5. Matérn 内核 1.7.5.6. 有理二次内核 1.7.5.7. 正弦平方内核 1.7.5.8. 点乘内核 1.7.5.9. 参考文献 1.7.6. 传统高斯过程 1.7.6.1. 回归实例介绍 1.7.6.2. 噪声数据拟合 1.7.6.3. 数学形式 1.7.6.3.1. 初始假设 1.7.6.3.2. 最佳线性无偏预测(BLUP) 1.7.6.3.3. 经验最佳线性无偏估计(EBLUP) 1.7.6.4. 关联模型 1.7.6.5. 回归模型 1.7.6.6. 实现细节 1.8. 交叉分解 1.9. 朴素贝叶斯 1.9.1. 高斯朴素贝叶斯 1.9.2. 多项分布朴素贝叶斯 1.9.3. 伯努利朴素贝叶斯 1.9.4. 堆外朴素贝叶斯模型拟合 1.10. 决策树 1.10.1. 分类 1.10.2. 回归 1.10.3. 多值输出问题 1.10.4. 复杂度分析 1.10.5. 实际使用技巧 1.10.6. 决策树算法: ID3, C4.5, C5.0 和 CART 1.10.7. 数学表达 1.10.7.1. 分类标准 1.10.7.2. 回归标准 1.11. 集成方法 1.11.1. Bagging meta-estimator(Bagging 元估计器) 1.11.2. 由随机树组成的森林 1.11.2.1. 随机森林 1.11.2.2. 极限随机树 1.11.2.3. 参数 1.11.2.4. 并行化 1.11.2.5. 特征重要性评估 1.11.2.6. 完全随机树嵌入 1.11.3. AdaBoost 1.11.3.1. 使用方法 1.11.4. Gradient Tree Boosting(梯度树提升) 1.11.4.1. 分类 1.11.4.2. 回归 1.11.4.3. 训练额外的弱学习器 1.11.4.4. 控制树的大小 1.11.4.5. Mathematical formulation(数学公式) 1.11.4.5.1. Loss Functions(损失函数) 1.11.4.6. Regularization(正则化) 1.11.4.6.1. 收缩率 (Shrinkage) 1.11.4.6.2. 子采样 (Subsampling) 1.11.4.7. Interpretation(解释性) 1.11.4.7.1. Feature importance(特征重要性) 1.11.4.7.2. Partial dependence(部分依赖) 1.11.5. Voting Classifier(投票分类器) 1.11.5.1. 多数类标签 (又称为 多数/硬投票) 1.11.5.1.1. 用法 1.11.5.2. 加权平均概率 (软投票) 1.11.5.3. 投票分类器(VotingClassifier)在网格搜索 (GridSearch)应用 1.11.5.3.1. 用法 1.12. 多类和多标签算法 1.12.1. 多标签分类格式 1.12.2. 1对其余 1.12.2.1. 多类学习 1.12.2.2. 多标签学习 1.12.3. 1对1 1.12.3.1. 多类别学习 1.12.4. 误差校正输出代码 1.12.4.1. 多类别学习 1.12.5. 多输出回归 1.12.6. 多输出分类 1.12.7. 链式分类器 1.13. 特征选择 1.13.1. 移除低方差特征 1.13.2. 单变量特征选择 1.13.3. 递归式特征消除 1.13.4. 使用 SelectFromModel 选取特征 1.13.4.1. 基于 L1 的特征选取 1.13.4.2. 基于 Tree(树)的特征选取 1.13.5. 特征选取作为 pipeline(管道)的一部分 1.14. 半监督学习 1.14.1. 标签传播 1.15. 等式回归 1.16. 概率校准 1.17. 神经网络模型(有监督) 1.17.1. 多层感知器 1.17.2. 分类 1.17.3. 回归 1.17.4. 正则化 1.17.5. 算法 1.17.6. 复杂性 1.17.7. 数学公式 1.17.8. 实用技巧 1.17.9. 使用 warm_start 的更多控制
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值