图的幂律度分布 power-law degree distributios

转载 2015年11月17日 21:23:27

讲的一篇图论文中说到,“The natural graphs commonly found in the real-world have highly skewed power-law degree distributios ……”,开始只是了解个大概,后来经查才知道。power-law degree distributios原来是一种描述网络图中结点度的分布,中文可叫做“幂律度分布”。

维基百科词条“复杂网络”中对“无尺度网络”的介绍中,可对“幂律度分布”有进一步地了解。

资料解释如下:

网络的度分布,是指当随机地从网络中抽取一个节点时,与这个节点相连的节点数(叫做这个节点的度)d 的概率分布。
比如:对一个n个节点组成的完全图度分布是:d = n - 1 的概率是1,其余的都是0。
无尺度网络的度分布满足幂律分布,也就是说d = k 的概率正比于k 的某个幂次(一般是负的):
\mathbb{P} (d = k) \propto k^{-\alpha}
(==加一句,这个符号是“正比于”的意思??好吧~见过好几次了)
随机网络的度分布属于正态分布,因此有一个特征度数,即大部分节点的度数都接近它。
无尺度网络的度分布是呈集散分布:大部分的节点只有比较少的连接,而少数节点有大量的连接。由于不存在特征度数,因此得名“无尺度”。
无尺度网络的例子有很多。因特网、美国演员网络、细胞中蛋白质的交互网络都是无尺度网络。

无尺度网络的特性是:当节点意外失效或改变时,对网络的影响一般很小,只有很小的概率会发生大的影响,但当有集散节点受到影响时,网络受到的影响会比随机网络大得多。

再盗个别人slides中的一个图。意思很明了,其中有1%的结点连接着一半的边,其余一半的边被剩余99%的结点所共用。
这里写图片描述

云平台分布式调度系统的演进

深度介绍公有云后台的内部架构设计与实现。首先从云计算的核心挑战开始,分析在大规模集群当中云的分布式调度系统需要解决哪些主要问题,然后详细讲述业界的一个发展历程,尤其是OpenStack在这个历程中的意义和价值,以及一些新兴的开源软件对云调度系统的总结和反思。最后会重点讲述腾讯云VStation基于腾讯的海量后台经验,如何设计腾讯云的后台架构和经验总结,并与OpenStack做一个对比。
  • 2017年09月25日 10:10

Matlab拟合曲线之幂律分布

收集的问题: 如何用matlab来拟合幂律分布,怎样将拟合值和实际值进行对比,放在一个图中,又如何检验实际数据是否符合拟合函数。如果不符合,如何来直接判断实际数据服从什么样的函数分布呢 ...
  • sun_wangdong
  • sun_wangdong
  • 2015-06-12 09:56:16
  • 5610

复杂网络幂律分布matlab仿真程序

  • 2010年03月08日 14:29
  • 964B
  • 下载

复杂网络MATLAB工具箱

幂律分布: 连续型:以f(x)表示某一数量指标的发生次数,若f(x)=f(x)-a,就称为幂律分布。 离散型:若p(k)为离散型随机变量的概率分布,若p(k)~ck-(a+1),则称p(k)为幂律...
  • u013408431
  • u013408431
  • 2016-12-30 14:37:01
  • 5465

随机图 & 如何处理Power-law(幂律)分布的数据

在研究复杂网络中,研究者使用的主要工具就是随机图理论。该理论创始于上个世纪40年代。由Erdos等人创立。最早提出的经典随机图模型就是ER模型。在随机图中,边的出现成为概率事件。随机图和经典图之间最大...
  • foreverdengwei
  • foreverdengwei
  • 2012-03-09 16:37:02
  • 2619

matlab自带的一些常用分布的分布律或概率密度

  • 2010年02月04日 16:52
  • 152KB
  • 下载

matlab下的幂律拟合函数

  • 2013年12月13日 19:34
  • 11KB
  • 下载

[python数据分析] 简述幂率定律及绘制Power-law函数

这篇文章主要是最近研究人类行为应用的内容,主要简单叙述下复杂网络的幂率分布以及绘制Power-law函数一些知识,同时是一篇在线笔记。希望对您有所帮助,如果文章中存在不足或错误的地方,还请海涵~ ...
  • Eastmount
  • Eastmount
  • 2017-03-23 23:57:57
  • 4463

复杂网络幂律分布matlab代码

  • 2012年10月16日 17:09
  • 10KB
  • 下载

Python获取sklearn库中iris数据写入本地csv文件,可视化展示数据并进行分类、聚类实验以及结果可视化

今天有点时间就找来了iris数据实验了一下,就是可视化绘图感觉很好玩,就拿这个数据集做了一个实验,下面是简单的实验流程 1.获取iris数据写入本地csv文件,实现如下: def write_...
  • Together_CZ
  • Together_CZ
  • 2017-12-02 19:39:08
  • 746
收藏助手
不良信息举报
您举报文章:图的幂律度分布 power-law degree distributios
举报原因:
原因补充:

(最多只允许输入30个字)