谱聚类算法及其代码(Spectral Clustering)

简介

文章将介绍谱聚类(spectral clustering)的基本算法,以及在matlab下的代码实现。介绍内容将包括:

  • 从图分割角度直观理解谱聚类
  • 谱聚类算法步骤
  • 数据以及实现代码

本文将不会涉及细节化的证明和推导,如有兴趣可参考july大神的文章从拉普拉斯矩阵说到谱聚类.

对谱聚类的理解

这一节将从图分割聚类的角度直观理解谱聚类。不过,因为本人是从事社交媒体分析的,将从一种社会关系网络的角度来介绍网络图分割成多个子图的概念。

图的分割

首先将社会关系网络看成是一个整体,每一个个体(user)就是这个网络中的各个节点(node),而连接个体的就是各个节点之间的边(edge)。在不同性质的网络中,边的定义可能有所不同,这里可以简单的理解成个体之间关系的亲密度。如图(1)所示

图(1)

每个个体与其他个体之间都有关系亲密度(也叫做权重,设定范围是[0,1]),可以看到user1,2,3之间关系紧密,user4,5,6关系紧密,而两个小部分是靠着user2和user6来联系的。以现实生活为例,123是A班级同学,456是B班级同学,2和6正好是认识的,关系一般,所以我们可以直观的把2和6之间的边给截断(cut),从而形成两个互不相关的子图,这样就完成了对这个网络的分割。

图的泛化意义

很多时候,并不是说一定要实际生活中是一个网络(network)的事物,才能够用图(graph)模型来表示。图模型只是解决问题的一个模型,可能一个对象既可以用图模型,也可以用非图模型来解决(拓扑,非拓扑)。举个例子,在聚类,我们之前(K-means 聚类算法及其代码实现)讨论过如何将数据点看成是坐标系下的一个个点,然后迭代找出中心点从而聚类。如果以另外一种视角,我们的坐标系中的各个点看成是图的节点,而点与点之间的相似性看成是边的权重,我们同样就构成了一个图模型。所以图与非图是相对来看的,取决于哪个更好解决问题。

谱聚类的意义

谱聚类要做的事情就是完成对图的分割,它想要找到最好的分割方式,来将图分割开来。这种对图的分割,取决于你如何定义这个图。比如,图中的点是什么?图中的边又是怎么确定的?最优分割的标准又是怎么样的?等等。对图本身定义的不同,就会导致不同的分割结果,所以我们为了明确这些东西,在这里以一个实际的定义为准,事先声明,图的定义也可以用其他方式,不过我这里用的就是现在常用的相似度矩阵图模型。

我们要解决的问题是:给定数据{ x1,x2,x3,...,xN },将其分成 K 个类。

而我们将这些数据点都看成是数据的节点,它们之间的相似度定义为边的权重值,相似度矩阵为 W={wij|1iN,1jN} ,其中相似性是按照 

wij=e||xixj||22σ2(1)

高斯相似度来计算的,其中 σ 是一个超参数(hyperparameter)。当然其他的相似性(如余弦相似度)也是同样适用的。可以看出,相似度矩阵 W 是一个对称(symmetric)矩阵。为了使某个单节点不会更容易被剔除,我们考虑一个归一化的对角矩阵 D (diagonal),对角线上元素是相似度矩阵一行(列,因为对称行列一样)所有元素的和,即 
D(i,i)=j=1Nxij(2)

这样计算。

因为没有给出关于截的概念,所以没有办法给出优化函数的形式,具体内容,还请参考从拉普拉斯矩阵说到谱聚类

谱聚类算法步骤

这一小节将会给出谱聚类算法的步骤,整体来说,谱聚类算法要做的就是先求出相似性矩阵,然后对该矩阵归一化运算,之后求前 K 个特征向量,最后运用K-means算法分类。 
实际上,谱聚类要做的事情其实就是将高维度的数据,以特征向量的形式简洁表达,属于一种降维的过程。本来高维度用k-means不好分的点,在经过线性变换以及降维之后,十分容易求解。下面就给出步骤:


1. 按照式 (1) 计算相似性矩阵 W  
2. 将 W 的对角线值,即 W(i,i)=0 ,是为了排除自身的相似度 
3. 按照式 (2) 计算归一化矩阵 D  
4. 按照式 (3) 计算归一化拉普拉斯图矩阵L 

L=D12WD12(3)

5. 计算L的特征向量,将前 K 个特征值最大的向量按列放置成一个矩阵 X ,即 

X=[v1,v2,...,vK](4)
v1,v2,...,vK 依次为前 K 个特征值最大的特征向量 
6.  归一化X形成矩阵Y 
7.  对矩阵Y按每行为一个数据点,进行k-means聚类,第 i 行所属的类就是原来 xi 所属的类。


至此就完成了谱聚类的全部过程。但是这里面我们其实忽略了一个很重要的参数 σ ,这个参数是需要初始化的,如何选择 σ 呢?请看下一节实例分析。

谱聚类代码分析

这一节介绍如何用matlab实现谱聚类的算法,数据以及代码可以在我的github上下载。

代码要解决的问题是如图(2)所示的一个分类问题,

 
图(2)

从图片上面我们可以看到这个数据有两个环,外面的环就是第一类,内部的环就是第二类,这个分类问题,是普通的k-means算法无法解决的。所以我们将使用代码来实现上一节介绍的各个步骤。 
首先,我们的数据存在 data 中,导入得到数据 allpts .

  1. 计算相似度矩阵 W ,其中向量化是运算可以用式 (5) 来理解。
X = allpts;
N = size(X,1);
squared_X = sum(X.*X,2);
transi_X = X*X';    %x_j * x_i^T;
X_i = repmat(squared_X,1,N); % same value in row
X_j = repmat(squared_X',N,1); % same value in col
E = -(X_i + X_j - 2*transi_X );
W = exp(E/(2*sigsq));
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

||xixj||2=(xixj)(xixj)T=xixTixjxTixixTj+xjxTj(5)

2. 将对角线设为零

W = W - diag(diag(W));
 
 
  • 1

diag()既可以取出对角线的元素,也可以将一个向量生成一个对角矩阵。 
3. 计算归一化矩阵 D

D = diag(sum(W'));
 
 
  • 1


4. 计算拉普拉斯矩阵 L

L =D^(-.5)*W*D^(-.5);
 
 
  • 1


5. 找特征值特征向量并排序,找前K个

K = 2;
[X,di]=eig(L);
[Xsort,Dsort]=eigsort(X,di);
Xuse=Xsort(:,1:K);
 
 
  • 1
  • 2
  • 3
  • 4

因为我这里面只想分成两类,所以K=2. 同时这里的eigsort是另外定义1的函数,如下

% [Vsort,Dsort] = eigsort(V,D)
%
% Sorts a matrix eigenvectors and a matrix of eigenvalues in order 
% of eigenvalue size, largest eigenvalue first and smallest eigenvalue
function [Vsort,Dsort] = eigsort(V,D);
eigvals = diag(D);
% Sort the eigenvalues from largest to smallest. Store the sorted
% eigenvalues in the column vector lambda.
[lohival,lohiindex] = sort(eigvals);
lambda = flipud(lohival);
index = flipud(lohiindex);
Dsort = diag(lambda);
% Sort eigenvectors to correspond to the ordered eigenvalues. Store sorted
% eigenvectors as columns of the matrix vsort.
M = length(lambda);
Vsort = zeros(M,M);
for i=1:M
  Vsort(:,i) = V(:,index(i));
end;
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

其中一些不必要的注释我就删除了。 
6. 归一化X得到矩阵Y

Xsq = Xuse.*Xuse;
divmat=repmat(sqrt(sum(Xsq')'),1,2)
Y=Xuse./divmat
 
 
  • 1
  • 2
  • 3

归一化就是将特征向量长度变成1 
7. 进行k-means聚类算法

[c,Dsum,z] = kmeans(Y,2)
kk=c;
c1=find(kk==1);
c2=find(kk==2);
 
 
  • 1
  • 2
  • 3
  • 4

kmeans聚类后,找到类别标号,最后简单画一个图(3)显示我们的分类结果 

 
图(3)

这里,我们用两种颜色表示了两种不同的类别,代码中的 sigma 可能不同,会导致不同的结果,这个我没有给出,各人根据问题各自设定0.1到10之类,具体可以去 我的github 上面下载完整代码和数据。

总结

至此,完成了全部的谱聚类算法的理解,算法具体步骤,以及实际实现代码。谱聚类能够完成k-means不能完成的工作,其基本思想是一个线性空间变换,能够提取出特征向量降维表示原本复杂的数据,从来使用k-means进行一个简单的聚类。涉及到特征向量的算法,还有之后会继续写的PCA算法

参考文献

  • Ng, A. Y., M. I. Jordan, and Y. Weiss (2001) “On Spectral Clustering:
  • Shi, J., and J. Malik (1997) “Normalized Cuts and Image Segmentation”
  • 2
    点赞
  • 40
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
谱聚类Spectral Clustering)是一种基于图论和线性代数的聚类算法,它将数据点的相似性转化为图的边权重,然后通过对图进行谱分解和聚类来实现数据点的划分。下面是谱聚类算法的简单Python伪码: 输入:数据集X,聚类数k,相似度矩阵W 1. 构建相似度矩阵W:根据数据集X,计算每对数据点之间的相似度,并构建相似度矩阵W。 2. 构建拉普拉斯矩阵L:计算拉普拉斯矩阵L,有多种方式可以计算,常用的有标准化的拉普拉斯矩阵和对称归一化的拉普拉斯矩阵。 3. 对L进行谱分解:对拉普拉斯矩阵L进行谱分解,得到特征值和对应的特征向量。 4. 特征向量归一化:将特征向量按行进行归一化,得到归一化后的特征向量矩阵U。 5. 使用k-means对U进行聚类:对归一化后的特征向量矩阵U进行k-means聚类,得到最终的聚类结果。 伪码中的步骤2和步骤3是谱聚类的核心步骤,它们通过特征值分解和特征向量归一化来实现数据点的降维和聚类。在实际的代码实现中,可以使用Python中的科学计算库(如NumPy、SciPy)和聚类库(如scikit-learn)来进行相似度矩阵的计算、矩阵操作和聚类算法的应用。 请注意,这只是谱聚类算法的简单伪码,实际的实现可能会涉及更多细节和优化。如果您需要详细了解谱聚类算法的实现,请参考相关文献或开源库中的代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值