我们会从它是什么、为什么需要它(与它的“表亲”Trie树对比)、如何工作、优缺点以及实际应用场景等方面进行全面的剖析。
讲解大纲
-
核心思想: 一句话概括基数树是什么。
-
与Trie树的渊源与对比: 理解基数树的关键在于理解它如何优化Trie树。
-
图解数据结构: 直观地看懂Trie树和基数树的区别。
-
核心操作详解: 插入(Insert)、查找(Search)和删除(Delete)是如何工作的,特别是最复杂的“节点分裂”情况。
-
优缺点分析: 什么时候该用它,什么时候不该用。
-
实际应用场景: 它在哪些领域大放异彩?
-
代码示例(Python): 通过一个简化的实现来巩固理解。
1. 核心思想
基数树(Radix Tree),也称为 基数特里(Radix Trie) 或 紧凑前缀树(Compact Prefix Tree),它的本质是一个空间优化版的Trie树(Prefix Tree)。
它的核心优化思想是:将Trie树中那些只有一个子节点的“中间节点”进行合并,从而减少节点的数量,节省内存空间。
2. 与Trie树的渊源与对比
要理解基数树,我们必须先快速回顾一下Trie树。
-
Trie树(前缀树):每个节点代表一个字符,从根到某个节点的路径构成一个字符串前缀。它非常适合做字符串的快速查找和前缀匹配。
-
Trie树的问题:当存储的字符串有很长的公共前缀时,会产生大量“链式”的单子节点路径,这会浪费大量内存。例如,存储 "slow" 和 "slower",会形成 s -> l -> o -> w 这样的链,中间的 s, l, o 节点都只有一个孩子。
基数树正是为了解决这个问题而生的。它通过合并这些“无效”的中间节点,让树变得更加“紧凑”。
3. 图解数据结构
让我们用一组单词来直观地感受一下:{ "romane", "romanus", "romulus", "rubens", "ruber", "rubicon" }
标准Trie树的结构
在Trie树中,每个边只代表一个字符。你会看到很长的单链条。
code Code
downloadcontent_copy
expand_less
(root)
|
'r'
/ \
'o' 'u'
| |
'm' 'b'
| /|\
'a' 'e' 'i'
| / \ |
'n' 'n' 'r' 'c'
/ \ | |
'e' 'u' 's' 'o'
| | |
(*) 's' 'n'
| |
(*) (*)
(*) 代表一个单词的结束。注意看 r-o-m-a-n 这条路径,节点非常多。
基数树的结构
在基数树中,边上存储的是字符串,而不是单个字符。
code Code
downloadcontent_copy
expand_less
IGNORE_WHEN_COPYING_START
IGNORE_WHEN_COPYING_END
(root)
|
"r"
/ \
"om" "ub"
/

最低0.47元/天 解锁文章
231

被折叠的 条评论
为什么被折叠?



