深入浅出地讲解基数树(Radix Tree)

我们会从它是什么、为什么需要它(与它的“表亲”Trie树对比)、如何工作、优缺点以及实际应用场景等方面进行全面的剖析。


讲解大纲

  1. 核心思想: 一句话概括基数树是什么。

  2. 与Trie树的渊源与对比: 理解基数树的关键在于理解它如何优化Trie树。

  3. 图解数据结构: 直观地看懂Trie树和基数树的区别。

  4. 核心操作详解: 插入(Insert)、查找(Search)和删除(Delete)是如何工作的,特别是最复杂的“节点分裂”情况。

  5. 优缺点分析: 什么时候该用它,什么时候不该用。

  6. 实际应用场景: 它在哪些领域大放异彩?

  7. 代码示例(Python): 通过一个简化的实现来巩固理解。


1. 核心思想

基数树(Radix Tree),也称为 基数特里(Radix Trie)紧凑前缀树(Compact Prefix Tree),它的本质是一个空间优化版的Trie树(Prefix Tree)

它的核心优化思想是:将Trie树中那些只有一个子节点的“中间节点”进行合并,从而减少节点的数量,节省内存空间。

2. 与Trie树的渊源与对比

要理解基数树,我们必须先快速回顾一下Trie树。

  • Trie树(前缀树):每个节点代表一个字符,从根到某个节点的路径构成一个字符串前缀。它非常适合做字符串的快速查找和前缀匹配。

  • Trie树的问题:当存储的字符串有很长的公共前缀时,会产生大量“链式”的单子节点路径,这会浪费大量内存。例如,存储 "slow" 和 "slower",会形成 s -> l -> o -> w 这样的链,中间的 s, l, o 节点都只有一个孩子。

基数树正是为了解决这个问题而生的。它通过合并这些“无效”的中间节点,让树变得更加“紧凑”。

3. 图解数据结构

让我们用一组单词来直观地感受一下:{ "romane", "romanus", "romulus", "rubens", "ruber", "rubicon" }

标准Trie树的结构

在Trie树中,每个边只代表一个字符。你会看到很长的单链条。

code Code

downloadcontent_copy

expand_less

    (root)
         |
         'r'
         / \
       'o' 'u'
        |   |
       'm' 'b'
        |   /|\
       'a' 'e' 'i'
        |   / \  |
       'n' 'n' 'r' 'c'
       / \  |      |
      'e' 'u' 's'    'o'
       |   |         |
      (*) 's'       'n'
           |         |
          (*)       (*)
  

(*) 代表一个单词的结束。注意看 r-o-m-a-n 这条路径,节点非常多。

基数树的结构

在基数树中,边上存储的是字符串,而不是单个字符。

code Code

downloadcontent_copy

expand_less

IGNORE_WHEN_COPYING_START

IGNORE_WHEN_COPYING_END

    (root)
         |
         "r"
         / \
     "om"   "ub"
      /
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值