
机器学习之留出法中的分层采样和多次切分
本身是数据划分的一种方式,将数据集分为训练集和测试集。为了提升留出法的评估效果,常常结合和等技术。以下是详细说明这些方法如何增强留出法的效果。该方法简单、直观,但它的局限性是评估结果依赖于单次数据划分,可能导致过度依赖划分的方式而产生不稳定的评估结果。是指在划分数据集时,按照数据集中的类别分布(特别适用于分类问题)进行分层。每个类别都按比例被抽取到训练集和测试集当中,以确保每个类别在训练集和测试集中的分布尽量接近原始数据集。
数据湖
hadoop
Doris
海量数据分析-机器学习和深度学习
大数据生态
python
Java
flink
Linux
LeetCode
BI平台
文学
2024最新深度学习算法
数据治理
Pulsar & Kafka
运维
数据库
noSQL
MySQL
练习
apache paimon
spark
Docker容器
HTML5
Druid
