Codeforces Round #139 (Div. 2) B. Well-known Numbers

16 篇文章 0 订阅
9 篇文章 0 订阅

B. Well-known Numbers
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Numbers k-bonacci (k is integer, k > 1) are a generalization of Fibonacci numbers and are determined as follows:

  • F(k, n) = 0, for integer n1 ≤ n < k;
  • F(k, k) = 1;
  • F(k, n) = F(k, n - 1) + F(k, n - 2) + ... + F(k, n - k), for integer nn > k.

Note that we determine the k-bonacci numbers, F(k, n), only for integer values of n and k.

You've got a number s, represent it as a sum of several (at least two) distinct k-bonacci numbers.

Input

The first line contains two integers s and k (1 ≤ s, k ≤ 109k > 1).

Output

In the first line print an integer m (m ≥ 2) that shows how many numbers are in the found representation. In the second line print mdistinct integers a1, a2, ..., am. Each printed integer should be a k-bonacci number. The sum of printed integers must equal s.

It is guaranteed that the answer exists. If there are several possible answers, print any of them.

Sample test(s)
input
5 2
output
3
0 2 3
input
21 5
output
3
4 1 16
题意:给你一个特殊的二维变形斐波那契数组,输入s和k,求在第k行怎么才能用这个特殊的斐波那契数组组成s,求需要的数的个数,然后再把每个数单列出来。

 我的思路是先把第k行中小于s的枚举出来,然后由大到小依次遍历,有一点贪心的意思!

代码:

#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
using namespace std;
int s,k,i,j;
int a[1000];
int main()
{

while(~scanf("%d%d",&s,&k))
  {
      memset(a,0,sizeof(a));
     a[0]=0;
     a[1]=1;
    for(i=2;;i++)
     {
         for(j=1;j<=k&&j<=i;j++)
           a[i]+=a[i-j];
           //cout<<a[i]<<"**"<<endl;
         if(a[i]>s) break;

     }

   int t=i,ans=0,n=s;
   for(i=t;i>0;i--)
     {
         if(n>=a[i])
        {
         //cout<<n<<"&&&";
            n-=a[i];
             ans++;
         }
     }
    printf("%d\n",ans+1);
     cout<<0;

   for(i=t;i>0;i--)
          if(s>=a[i])
           {
               s-=a[i];
         printf(" %d",a[i]);

      }
    cout<<endl;
  }
    return 0;
}







评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值