【Google 机器学习笔记】六、表示法

本文介绍了机器学习中的表示法,包括如何将原始数据转化为机器学习模型可用的特征矢量。主要内容包括数值映射、分类值的处理(如字典映射和二元向量表示,特别是独热编码)、数据清理的技巧(如缩放特征值、处理离群值、分箱和清查)。特征工程的关键在于创建有意义且易于模型处理的特征。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【Google 机器学习笔记】

六、表示法【Representation】

将数据映射到实用特征的过程称之为表示法。本节介绍如何规范处理数据。


  • 特征工程:最大限度地从原始数据中提取特征以供算法和模型使用。
    特征工程将原始数据映射到机器学习特征
      如上图,由于原始数据常常以一些不适合的量表示(如使用-1来表示不存在)以及其他原因,需要将原始数据通过特征工程转化为机器学习能识别的数据(特征矢量:类似于Python中的元组)。
      另外,由于特征需要与权重相乘,一些数据也需要进行处理(如文字、种类等)。
      将原始数据转化为特征数据有以下两种方法:
      1. 映射数值:对于数值型数据,直接映射即可。如图:将整数值映射到浮点值

      2. 映射分类值:对于规模较小的离散非数值型数据(称之为分类数据【Categorical data】离散特征【Discrete feature】),需要使用特征工程将非数值转换为数值。有以下两种方法:
        ① 字典:定义一个从特征值到整数的映射。例如,通过这种方法,我们可以按照以下方式将街道名称映射到数字:
    原始特征值 映射值 Charleston Road 0 North Shoreline Boulevard 1 Shorebird Way 2 Rengstorff Avenu 3 Out of vocabulary(OOV) 4
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值