【Google 机器学习笔记】
六、表示法【Representation】
将数据映射到实用特征的过程称之为表示法。本节介绍如何规范处理数据。
- 特征工程:最大限度地从原始数据中提取特征以供算法和模型使用。

如上图,由于原始数据常常以一些不适合的量表示(如使用-1来表示不存在)以及其他原因,需要将原始数据通过特征工程转化为机器学习能识别的数据(特征矢量:类似于Python中的元组)。
另外,由于特征需要与权重相乘,一些数据也需要进行处理(如文字、种类等)。
将原始数据转化为特征数据有以下两种方法:
1. 映射数值:对于数值型数据,直接映射即可。如图:
2. 映射分类值:对于规模较小的离散非数值型数据(称之为分类数据【Categorical data】 或 离散特征【Discrete feature】),需要使用特征工程将非数值转换为数值。有以下两种方法:
① 字典:定义一个从特征值到整数的映射。例如,通过这种方法,我们可以按照以下方式将街道名称映射到数字:
原始特征值 映射值 Charleston Road 0 North Shoreline Boulevard 1 Shorebird Way 2 Rengstorff Avenu 3 Out of vocabulary(OOV) 4

本文介绍了机器学习中的表示法,包括如何将原始数据转化为机器学习模型可用的特征矢量。主要内容包括数值映射、分类值的处理(如字典映射和二元向量表示,特别是独热编码)、数据清理的技巧(如缩放特征值、处理离群值、分箱和清查)。特征工程的关键在于创建有意义且易于模型处理的特征。
最低0.47元/天 解锁文章

1006

被折叠的 条评论
为什么被折叠?



