
机器学习
文章平均质量分 79
机器学习(ML) 是人工智能(AI) 的一部分,属于计算科学领域,专门分析和解释数据的模式及结构,以实现无需人工交互即可完成学习、推理和决策等行为的目的。 简单来说,机器学习即支持用户向计算机算法馈送大量数据,然后让计算机分析这些数据,并仅根据输入数据给出数据驱动型建议和决策。
y江江江江
不忘初心
展开
-
机器学习--张量
张量是机器学习程序中的数字容器,本质上就是各种不同维度的数组,如下图所示。张量的维度称为轴(axis),轴的个数称为阶(rank)原创 2024-12-10 11:57:55 · 379 阅读 · 0 评论 -
机器学习--Kaggle的使用
灰度图像数据集是3D张量,第一个维度是样本维(也就是一张一张的图片,共60 000张),后面两个是特征维(也就是图片的28px×28px的矩阵)K折验证(K-fold validation)的思路是将数据划分为大小相同的K个分区,对于每个分区,都在剩余的K-1个分区上训练模型,然后在留。(1)Keras要求图像数据集导入卷积网络模型时为4阶张量,最后一阶代表颜色深度,灰度图像只有一个颜色通道,可以设置其值为1。对于数据集的规模比较小或者模型性能很不稳定的情况,这是一种很有用的方法。(二维卷积)层,两个。原创 2024-12-09 18:06:26 · 1214 阅读 · 0 评论 -
机器学习--colab使用说明
点击+New按钮可以添加本地的文件和程序(在colab中要读取的数据需要实现上床,这点不如Kaggle有很多可以直接用的数据)原创 2024-12-08 21:46:01 · 477 阅读 · 0 评论 -
机器学习--jupyter-matplotlib使用中无法显示中文
在jupyter中,通过matplotlib作图时可能会添加中文标题,但有时候会不显示中文即可显示中文。原创 2024-03-23 17:02:03 · 811 阅读 · 0 评论 -
机器学习-案例:流行电影统计
现在我们有一组从2006年到2016年1000部最流行的电影数据数据来源:https://www.kaggle.com/damianpanek/sunday-eda/data。原创 2024-01-26 20:22:46 · 550 阅读 · 0 评论 -
机器学习-pandas(含数据)
1.索引直接索引 – 先列后行,是需要通过索引的字符串进行获取loc – 先行后列,是需要通过索引的字符串进行获取iloc – 先行后列,是通过下标进行索引ix – 先行后列, 可以用上面两种方法混合进行索引2.赋值data.3.排序dataframe对象.sort_values()对象.sort_index()series对象.sort_values()对象.sort_index()DataFramefunc:自定义函数。原创 2024-01-26 19:48:52 · 843 阅读 · 1 评论 -
机器学习-numpy
使用Python列表可以存储一维数组,通过列表的嵌套可以实现多维数组,那么为什么还需要使用Numpy的ndarray呢?在这里我们通过一段代码运行来体会到ndarray的好处a = []# 通过%time魔法方法, 查看当前行的代码运行一次所花费的时间在结果中发现,通过numpy计算后的时间比原生python要快很多。从中我们看到ndarray的计算速度要快很多,节约了时间。机器学习的最大特点就是大量的数据运算,那么如果没有一个快速的解决方案,那可能现在python也在机器学习领域达不到好的效果。原创 2024-01-23 18:05:16 · 1155 阅读 · 0 评论 -
机器学习--Matplotlib
Matplotlib 是 Python 的绘图库,它能让使用者很轻松地将数据图形化,并且提供多样化的输出格式。Matplotlib 可以用来绘制各种静态,动态,交互式的图表。Matplotlib 是一个非常强大的 Python 画图工具,我们可以使用该工具将很多数据通过图表的形式更直观的呈现出来。Matplotlib 可以绘制线图、散点图、等高线图、条形图、柱状图、3D 图形、甚至是图形动画等等。原创 2024-01-18 22:21:47 · 1207 阅读 · 2 评论 -
机器学习--jupyter使用
Jupyter项目是一个非盈利的开源项目,源于2014年的ipython项目,因为它逐渐发展为支持跨所有编程语言的交互式数据科学和科学计算Jupyter Notebook,原名IPython Notbook,是IPython的加强网页版,一个开源Web应用程序名字源自Julia、Python 和 R(数据科学的三种开源语言)是一款程序员和科学工作者的编程展示软件文件格式是用于计算型叙述的文档格式的正式规范实时运行的代码、叙事性的文本和可视化被整合在一起,方便使用代码和数据来讲述故事。原创 2024-01-18 21:47:19 · 897 阅读 · 0 评论 -
机器学习--人工智能概述
机器学习是从数据中自动分析获得模型,并利用模型对未知数据进行预测。数据简介在数据集中一般:一行数据我们称为一个样本一列数据我们成为一个特征有些数据有目标值(标签值),有些数据没有目标值数据类型构成:数据类型一:特征值+目标值(目标值是连续的和离散的)数据类型二:只有特征值,没有目标值机器学习一般的数据集会划分为两个部分:训练数据:用于训练,构建模型测试数据:在模型检验时使用,用于评估模型是否有效划分比例训练集:70% 80% 75%测试集:30% 20% 25%原创 2024-01-18 19:14:36 · 1115 阅读 · 0 评论