Tr A
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1980 Accepted Submission(s): 1458
Problem Description
A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973。
Input
数据的第一行是一个T,表示有T组数据。
每组数据的第一行有n(2 <= n <= 10)和k(2 <= k < 10^9)两个数据。接下来有n行,每行有n个数据,每个数据的范围是[0,9],表示方阵A的内容。
每组数据的第一行有n(2 <= n <= 10)和k(2 <= k < 10^9)两个数据。接下来有n行,每行有n个数据,每个数据的范围是[0,9],表示方阵A的内容。
Output
对应每组数据,输出Tr(A^k)%9973。
Sample Input
2 2 2 1 0 0 1 3 99999999 1 2 3 4 5 6 7 8 9
Sample Output
2 2686
题意: 中文题看得懂。。
思路:二分的方法进行快速幂。。举个例子如2 ^ 16 = 2 ^ 2 ^ 8 = 2 ^ 2 ^ 2 ^ 4 = 2 ^ 2 ^ 2 ^ 2 ^ 2...这样本来要乘16次2.转换成只需要进行4次2的平方。。矩阵也是同样的道理。。这样做就可以大大减少时间复杂度。
代码:
#include <stdio.h>
#include <string.h>
int t;
int n, k;
int map[20][20];
int sum;
void mu(int a[][20], int b[][20]) {
int sbb[20][20];
for (int k = 0; k < n; k ++) {
for (int i = 0; i < n; i ++) {
int sum = 0;
for (int j = 0; j < n; j ++) {
sum += a[k][j] * b[j][i];
}
sbb[k][i] = sum % 9973;
}
}
for (int i = 0; i < n; i ++)
for (int j = 0; j < n; j ++)
map[i][j] = sbb[i][j];
}
void tra(int map[][20], int k) {
int bs[20][20];
for (int i = 0; i < n; i ++)
for (int j = 0; j < n; j ++)
bs[i][j] = map[i][j];
if (k / 2) {
mu(map, map);
tra(map, k / 2);
if (k % 2)
mu(map, bs);
}
}
int main() {
scanf("%d", &t);
while (t --) {
sum = 0;
memset(map, 0, sizeof(map));
scanf("%d%d", &n, &k);
for (int i = 0; i < n; i ++) {
for (int j = 0; j < n; j ++) {
scanf("%d", &map[i][j]);
}
}
tra(map, k);
for (int i = 0; i < n; i ++)
sum += map[i][i];
printf("%d\n", sum % 9973);
}
return 0;
}