HDU 1575 Tr A(快速幂 + 二分)

Tr A

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1980    Accepted Submission(s): 1458


Problem Description
A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973。
 

Input
数据的第一行是一个T,表示有T组数据。
每组数据的第一行有n(2 <= n <= 10)和k(2 <= k < 10^9)两个数据。接下来有n行,每行有n个数据,每个数据的范围是[0,9],表示方阵A的内容。
 

Output
对应每组数据,输出Tr(A^k)%9973。
 

Sample Input
  
  
2 2 2 1 0 0 1 3 99999999 1 2 3 4 5 6 7 8 9
 

Sample Output
  
  
2 2686

题意: 中文题看得懂。。

思路:二分的方法进行快速幂。。举个例子如2 ^ 16 = 2 ^ 2 ^ 8 = 2 ^ 2 ^ 2 ^ 4 = 2 ^ 2 ^ 2 ^ 2 ^ 2...这样本来要乘16次2.转换成只需要进行4次2的平方。。矩阵也是同样的道理。。这样做就可以大大减少时间复杂度。

代码:

#include <stdio.h>
#include <string.h>

int t;
int n, k;
int map[20][20];
int sum;

void mu(int a[][20], int b[][20]) {
    int sbb[20][20];
    for (int k = 0; k < n; k ++) {
	for (int i = 0; i < n; i ++) {
	    int sum = 0;
	    for (int j = 0; j < n; j ++) {
		sum += a[k][j] * b[j][i];
	    }
	    sbb[k][i] = sum % 9973;
	}
    }
    for (int i = 0; i < n; i ++)
	for (int j = 0; j < n; j ++)
	    map[i][j] = sbb[i][j];
}
void tra(int map[][20], int k) {
    int bs[20][20];
    for (int i = 0; i < n; i ++)
	for (int j = 0; j < n; j ++)
	    bs[i][j] = map[i][j];
    if (k / 2) {
	mu(map, map);
	tra(map, k / 2);
    if (k % 2)
	mu(map, bs);
    } 
}
int main() {
    scanf("%d", &t);
    while (t --) {
	sum = 0;
	memset(map, 0, sizeof(map));
	scanf("%d%d", &n, &k);
	for (int i = 0; i < n; i ++) {
	    for (int j = 0; j < n; j ++) {
		scanf("%d", &map[i][j]);
	    }
	}
	tra(map, k);
	for (int i = 0; i < n; i ++)
	    sum += map[i][i];
	printf("%d\n", sum % 9973);
    }
    return 0;
}


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值