Soul Joy Hub

但行好事,莫问前程。

《neural network and deep learning》题解——ch01 神经网络

在线阅读:http://neuralnetworksanddeeplearning.com/1.2 S 型神经元问题 1证:σ(cw,cb)=11+e−∑jcwjxj−cb=11+e−cz\large \color{blue}{\sigma (cw,cb) = \frac{1}{1+e^{-\su...

2017-06-28 22:11:05

阅读数 5256

评论数 6

TensorFlow实战——CNN(VGGNet19)——图像风格转化

http://blog.csdn.net/u011239443/article/details/73721903这次我们要做一件比较有趣的事——讲图像风格转化。如何将一张杭州西湖图片:将其风格转化为和梵高的《星夜》一样具有鲜明艺术的风格呢?先给出完整的代码:https://github.com/x...

2017-06-25 20:27:15

阅读数 20193

评论数 8

解决 git push Failed to connect to 127.0.0.1 port 45463: 拒绝连接

今天上传Github代码突然报错:git pushwarning: push.default 尚未设置,它的默认值在 Git 2.0 已从 'matching' 变更为 'simple'。若要不再显示本信息并保持传统习惯,进行如下设置: git config --global push.defa...

2017-06-25 15:21:54

阅读数 10835

评论数 0

TensorFlow实战——RNN(LSTM)——预测sin函数

http://blog.csdn.net/u011239443/article/details/73650806关于LSTM可以参阅:http://blog.csdn.net/u011239443/article/details/73196473 完整代码:https://github.com/...

2017-06-23 19:03:14

阅读数 4534

评论数 0

阿里“百技”感言

(由于数据安全,有些信息会做处理)短短的三天,却收获了非常非常多,老师们授课和言谈举止让我感受到阿里精神。这种精神,在这三天里,我认识并且深深的受它启发。它对我的影响是长远的,无论我以后是否在阿里,都会去努力的学习它,受它的启迪。也许这就是阿里的魅力。另外是我的同学们,我不能用”优秀”这简单的两个...

2017-06-22 20:34:28

阅读数 2980

评论数 1

理解长短期记忆网络(LSTM NetWorks)

摘要:作者早前提到了人们使用RNNs取得的显著成效,基本上这些都是使用了LSTMs。对于大多数任务,它们真的可以达到更好的效果!写了一堆方程式,LSTMs看起来很吓人。希望通过这篇文章中一步一步的剖析,能更好理解它们。 ...

2017-06-13 23:27:47

阅读数 1085

评论数 0

TensorFlow实战——RNN

http://blog.csdn.net/u011239443/article/details/73136866RNN循环神经网络(RNN)的特殊的地方在于它保存了自己的状态,每次数据输入都会更新状态,输出预测值,并输出更新后的状态,和批数据一起作为输入:如上图,U为数据输入,V为预测值输出,W为...

2017-06-12 22:30:16

阅读数 1136

评论数 0

采用深度学习算法为Spotify做基于内容的音乐推荐

http://www.csdn.net/article/2015-02-10/2823907摘要:本文概述了作者在Spotify的机器学习实践经验,解释了使用卷积神经网络(CNN)做基于音频的音乐推荐的方法,并提出了有关该卷积网络的实际学习效果的心得。采用了GTX 780Ti GPU,Theano...

2017-06-11 15:30:34

阅读数 1837

评论数 0

TensorFlow实战——CNN(Inception-v3)

本文:http://blog.csdn.net/u011239443/article/details/73008131 我们之前介绍的神经网络层与层之间都是一对一的,而Inception-v3模型存在一对多和多对一。 一对多:用不同或者相同的过滤器过滤出多个层 多对一:将多层合并,即深度会相加。...

2017-06-10 21:05:31

阅读数 5410

评论数 0

TensorFlow实战——CNN(LeNet5)——MNIST数字识别

本文地址: http://blog.csdn.net/u011239443/article/details/72861591我们来实现下不标准的LeNet模型: train:https://github.com/xiaoyesoso/TensorFlowinAction/blob/master...

2017-06-04 21:20:21

阅读数 5121

评论数 1

TensorFlow实战——CNN

全连接神经网络存在以下三个问题: 1. 参数太多(每个节点都要和下一层的所有节点连接) 2. 容易过拟合 3. 不能很好的抽取局部的特征(如一张有两只猫的图片,它偏向于抽取整张图的特征,而不是图中部分区域的特征)鉴于以上的问题,我们介绍卷积神经网络(CNN)。先介绍CNN中的池化层和卷积层。...

2017-06-03 22:59:10

阅读数 799

评论数 0

提示
确定要删除当前文章?
取消 删除