Soul Joy Hub

但行好事,莫问前程。

论文阅读:《基于深度学习的线上农产品销量预测模型研究》

ICM模型文中提出的 model- Imperial Crown Model(short for ICM)简单讲就是用自动编码器将权值初始化,然后反向传播优化模型。关于自动编码器可以参阅:http://blog.csdn.net/u011239443/article/details/7669280...

2017-09-29 16:47:46

阅读数 1411

评论数 0

《深度学习Ng》课程学习笔记03week2——机器学习(ML)策略(2)

2.1 进行误差分析标注错误: 2.2 清楚标注错误的数据 纠正错误 dev / test 数据集的方法: 2.3 快速搭建你的第一个系统,并进行迭代尽快的搭建你的第一个系统。 2.4 在不同的划分上进行训练并测试对于不同来源的数据,最佳方案可能并不是将其混合。如,我们最终需要预测的数据来...

2017-09-29 12:33:45

阅读数 482

评论数 0

论文阅读:《基于机器学习的企业定价算法研究》

《基于机器学习的企业定价算法研究》 冯 平,宣慧玉,高宝俊 (西安交通大学管理学院.陕西西安710049)论文阅读笔记ASPEN中企定价的机理是:在定价过程中,企业首先要根据叫个因素判断自己当前所处的市场状态,再采取相应的对策。在每种市场状态下,企业都有三种对策:提高价格,降低价格和维持价格不...

2017-09-28 17:54:00

阅读数 1573

评论数 0

《深度学习Ng》课程学习笔记03week1——机器学习(ML)策略(1)

1.1 为什么是 ML 策略各种各样的机器学习策略。如何选择、使用? 1.2 正交化调参时,应将两个参数进行正交,降低操作的复杂: 1.3 单一数字评估指标 用平均值来代替多个值: 1.4 满足和优化指标准确率和运行时间之间的协调: 1.5 训练 / 开发 / 测试集划分1.6 开发集合...

2017-09-27 20:58:36

阅读数 510

评论数 0

《深度学习Ng》课程学习笔记02week3——超参数调试、Batch正则化和程序框架

http://blog.csdn.net/u011239443/article/details/780886023.1 调试处理 参数: - 不要使用格子点调参,而应该使用随机点调参。因为格子点对于单一粒度 调参时,我们可以先调参选到几个结果较优的点(如图被蓝色圈住的) 3.2 为超参数选择合...

2017-09-25 19:33:24

阅读数 838

评论数 0

《深度学习Ng》课程学习笔记02week2——优化算法

2.1 Mini-batch 梯度下降法2.2 理解 mini-batch 梯度下降法2.3 指数加权平均对温度做指数加权平均曲线:β = 0.98 时,会得到更加平缓的曲线,如图绿色。 β = 0.5 时,会得到更加波动的曲线,如图黄色。2.4 理解指数加权平均2.5 指数加权平均的偏差修正当...

2017-09-22 18:57:56

阅读数 699

评论数 0

《deep learning》学习笔记(4)——数值计算

对于机器学习的问题,有一部分可以通过数学推导的方式直接得到用公式表达的解析解,但对绝大多数的问题来说,解析解是不存在的,需要使用迭代更新的方法求数值解。然而实数的精度是无限的,而计算机能够表达的精度是有限的,这就涉及到许多数值计算方法的问题。4.1 上溢和下溢 由于计算机表达实数的精度的有限,在某...

2017-09-21 09:57:47

阅读数 706

评论数 0

《deep learning》学习笔记(3)——概率与信息论

3.1 为什么要使用概率?概率论是用来描述不确定性的数学工具,很多机器学习算都是通过描述样本的概率相关信息或推断来构建模型;信息论最初是用来描述一个信号中包含信息的多少进行量化,在机器学习中通常利用信息论中的一些概念和结论来描述不同概率分布之间的关系。3.2 随机变量 随机变量: 可以随机取不同值...

2017-09-20 14:11:10

阅读数 1587

评论数 0

《深度学习Ng》课程学习笔记02week1——深度学习的实用层面

1.1 训练 / 开发 / 测试集1.2 偏差 / 方差低偏差高方差,则表示泛化能力不强,可能过拟合。 高偏差,则表示可能还欠拟合。 1.3 机器学习基础1.4 正则化逻辑回归正则化神经网络正则化1.5 为什么正则化可以减少过拟合? 对于S类激活函数,当W接近与零时,激活函数更加趋近于线性函...

2017-09-12 16:50:08

阅读数 566

评论数 0

《deep learning》学习笔记(2)——线性代数

2.1 标量、向量、矩阵和张量 在numpy中,可以用以下方式生成各种维度的张量:>>> import numpy as np ## 生成元素全为0的二维张量,两个维度分别为3,4 >>> np.zeros((3,4)) array([[ 0., 0., ...

2017-09-12 10:48:58

阅读数 566

评论数 0

《深度学习Ng》课程学习笔记01week4——深层神经网络

4.1 深层神经网络4.2 前向和反向传播前向传播反向传播 反向传播的四个基本方程 总结4.3 深层网络中的前向传播4.4 核对矩阵的维数4.5 为什么使用深层表示 可以从简单特征到复杂特征:从电路理论上来说需要隐藏层才能多特征计算: 4.6 搭建深层神经网络块4.7 参数 VS 超参...

2017-09-11 09:10:49

阅读数 1105

评论数 0

《deep learning》学习笔记(1)——引言

http://blog.csdn.net/u011239443/article/details/77890949 人工智能(artificialintelligence, AI)已经成为一个具有众多实际应用和活跃研究课题的领域,并且正在蓬勃发展。层次化的概念让计算机构建较简单的概念来学习复杂概念...

2017-09-08 09:24:23

阅读数 673

评论数 0

《深度学习Ng》课程学习笔记01week3——浅层神经网络

3.1 神经网络概览3.2 神经网络表示3.3 计算神经网络的输出 对应的正向传播公式:3.4 多个例子中的向量化3.5 向量化实现的解释3.6 激活函数更多可以参阅《神经网络-激活函数对比》3.7 为什么需要非线性激活函数?如果没有非线性激活函数,那么神经网络其实就是只是单个神经元的线性组合:...

2017-09-07 17:55:11

阅读数 1202

评论数 0

《深度学习Ng》课程学习笔记01week2——神经网络基础

2.1 二分分类二分类例子: 判断图片中是否有猫: 将图片RGB矩阵拉伸为向量: 使用上面的特征向量来判断图片中是否有猫。2.2 logistic 回归2.3 logistic 回归损失函数这里给出的是交叉熵损失函数:2.4 梯度下降法为了最小化代价函数,找到 w,b 的最优解 对 代...

2017-09-05 16:10:13

阅读数 686

评论数 0

《neural network and deep learning》题解——ch03 其他技术(momentun,tanh)

http://blog.csdn.net/u011239443/article/details/77848503问题一 • 如果我们使⽤ µ > 1 会有什么问题? • 如果我们使⽤ µ < 0 会有什么问题? 如果我们使⽤ µ > 1,∇C趋近于0时,v依旧会越来越大...

2017-09-05 10:34:56

阅读数 750

评论数 0

提示
确定要删除当前文章?
取消 删除