伽马函数的总结
@(概率论)
Γ ( x ) = ∫ 0 + ∞ t x − 1 e − t d t \Gamma(x) = \int_0^{+\infty}t^{x-1}e^{-t}dt Γ(x)=∫0+∞tx−1e−tdt
这个可以形象理解为用一个伽马刀,对x动了一刀,于是指数为x-1,动完刀需要扶着梯子(-t)才能走下来。这样,就记住了关键的 t x − 1 , − t t^{x-1},-t tx−1,−t.
性质:
- $\Gamma(x+1) = x\Gamma(x) $
- $\Gamma(x) > 0, 任意x\in(0,+\infty) $
- $\Gamma(1) = 1 $
用到概率论中的计算形式是:
令 t = u

本文总结了伽马函数Γ(x)的定义及其性质,包括Γ(x+1) = xΓ(x),Γ(x)在(0, +∞)上恒正,以及Γ(n) = (n-1)!。在概率论中,伽马函数通过变换t=u^2用于特定积分的计算。文章还提到伽马函数在计算常数伽马函数值时的重要性,并提供了一个将x视为变量的实例链接。"
102949779,7982818,使用归并排序优化合并多个有序数组的JS实现,"['排序算法', '数据结构', 'JS实现', '数组操作', '性能优化']
最低0.47元/天 解锁文章
6261

被折叠的 条评论
为什么被折叠?



