级数形式套级数的敛散性判断

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u011240016/article/details/53104658

级数形式套级数的敛散性判断

@(微积分)

已知级数(1):
n=1(112+1314+..+(1)n+1n)

级数(2):
n=1(1+12+13+14+..+1n), 则两级数

分析:这种题目的主要坑点是会让人关注内部级数的敛散性,而忘记了外面还有层级数。导致做出前面是收敛后面是发散的判断。

un=112+1314+..+(1)n+1n

un本身是收敛的,这不必怀疑,因为根据交错级数收敛定理可以得出。

我们关注的是un作为元素时构成的级数将是什么性质。

不妨加括号看看,知道:
u2n=(112)+(1314)+..+((1)2n12n1(1)2n2n)

可见,limnun0

不满足收敛的必要条件。所以发散。

而第二个内部很显然元素也不趋近于0,不满足收敛条件,因此,也是发散。

总之,这是一种光环效应的命题方式,引导我们关注常见的简单的级数,实际上越是简单越是需要加倍小心。

展开阅读全文

没有更多推荐了,返回首页