使用caffe中的imagenet对自己的图片进行分类训练

实验流程

1.      数据集准备

获取训练图片集与验证图片集,并产生train.txt与val.txt,内容为图片路径与分类标签;将图片进行大小重设,设置为256*256大小;使用create_imagenet.sh脚本将2组图片集转换为lmbp格式。

2.      计算图像均值

使用make_imagenet_mean.sh计算图像均值,产生imagenet_mean.binaryproto文件。

3.      设置运行参数

拷贝caffe-master/model/bvlc_reference_caffenet中的文件,修改train_val.prototxt,solver.prototxt并进行路径的修改;拷贝caffe_master/examples/imagenet中的train_caffnet.sh文件,对路径进行修改。

4.      运行train_caffnet.sh


参考:

官方:

http://caffe.berkeleyvision.org/gathered/examples/imagenet.html

图文:

http://www.lai18.com/content/2488948.html


阅读更多
个人分类: 机器学习
上一篇NodeJS+MongoDB+nginx 开发
下一篇使用caffe中的imagenet对自己的图片进行分类训练(超级详细版)
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭