【数据结构与算法】寻找无序数组中第K大的数

文章介绍了四种在无序数组中寻找第K大元素的方法:排序法、插入法、小顶堆法和分治法。排序法通过先排序再查找;插入法维护一个有序数组,遍历原数组并插入;小顶堆法构建小顶堆,遍历数组调整堆;分治法利用快速排序的思想分而治之。每种方法都有其特定的时间复杂度。
摘要由CSDN通过智能技术生成


寻找无序数组中第K大的数
方法1:排序法
方法2:插入法
方法3:小顶堆法
方法4:分治法

部分参考:
漫画:寻找无序数组的第K大元素
给定数组如下,求第K大的元素,K=6: 
方法1:排序法
先将数组排序,然后按照索引找到第K大的元素
排序算法见:常见七种排序算法

方法2:插入法
1.维护一个长度为k的数组A的有序数组(降序),用于存储已知的k个较大的元素。
2.遍历原数组,每遍历到一个元素,和数组A中最小的元素相比较,如果小于等于数组A的最小元素,继续遍历;如果大于数组A的最小元素,则插入到数组A中,并把曾经的最小元素删除。
3.长度为K的数组中,最后一个元素就是第K大的元素
时间复杂度:O(nk)

方法3:小顶堆法
1.使用数组的前K个元素,构建一个大小为K的小顶堆
堆:完全二叉树
大顶堆:每个结点的值都大于或等于其左右孩子结点的值
小顶堆:每个结点的值都小于或等于其左右孩子结点的值

2.遍历数组中剩下的元素,和堆顶相比较,如果小于等于堆顶元素,继续遍历;如果大于堆顶元素,则把该元素与堆顶交换,调整堆。
3.堆顶元素就是第K大的元素。

注意:如果使用小顶堆进行排序,那么得到的序列是降序(因为需要把堆顶元素和未调整部分的最后一个元素交换,那么最小的元素就在最后面)
从小到大排序:大顶堆
从大到小排序:小顶堆
寻找第K大的元素:小顶堆
寻找第K小的元素:大顶堆

#include <iostream>

using namespace std;

//调整堆
void adjustHeap(int arr[], int index, int k){
    int min = index;
    int left = 2 * index + 1;
    int right = 2 * index + 2;
    if (left < k && arr[left] < arr[min]){
        min = left;
    }
    if (right <k && arr[right] < arr[min]){
        min = right;
    }

    if (min != index){
        swap(arr[min], arr[index]);
        adjustHeap(arr, min, k); //为了使得调整后依旧满足最小堆的特性,需要再次调整
    }
}

int findTopK(int arr[], int k,int len){
     //从最后一个叶子节点开始调整堆
    for (int i = k / 2 - 1; i >= 0; i--){
        adjustHeap(arr, i, k);
    }
    
    //遍历剩下的元素
    for (int i = k; i < len; i++){
        if (arr[i]>arr[0]){
            swap(arr[0], arr[i]);
            adjustHeap(arr, 0, k);
        }
    }

    return arr[0];
}


int main()
{
    int arr[] = { 7, 5, 15, 3, 17, 2, 20, 24, 1, 9, 12, 8 };
    int k = 7;
    int len = sizeof(arr) / sizeof(int);

    int target = findTopK(arr, k,len);

    cout << target<<endl;
    return 0;
}

方法4:分治法
1.利用快速排序的思想,每一次把数组分成较大和较小的两部分,以第一个元素A为基准,把大于A的元素都交换到数组左边,小于A的元素都交换到数组右边。
2.判断K与A索引的大小,如果K小于A的索引,那么在A的左边再次利用分治法;反之,在A的右侧利用分治法

#include <iostream>
using namespace std;

//把大的放在左边,小的放在右边
int partition(int arr[], int i, int j){
    int temp = arr[i];
    while (i < j){
        while (i<j && temp >= arr[j]){
            j--;
        }
        swap(arr[i], arr[j]);
        while (i<j && temp<=arr[i]){
            i++;
        }
        swap(arr[i], arr[j]);
    }
    return  i;
}

int findMaxK(int arr[], int k, int start, int end){
    int q = partition(arr, start, end);

    if (q>k){
        return findMaxK(arr, k, start, q - 1);
    }
    else if (q<k){
        return findMaxK(arr, k, q + 1, end);
    }
    
    return q;
}


int main()
{
    int arr[] = { 7, 5, 15, 3, 17, 2, 20, 24, 1, 9, 12, 8 };
    int k = 6;
    int len = sizeof(arr) / sizeof(int);
    
    int target = findMaxK(arr, k-1,0, len-1);  //第K大的索引是k-1
    cout << arr[target]<<endl;
    
    return 0;
}


如果用分治法找到第K小的值,那么需要修改partition函数,具体代码如下:

#include <iostream>
using namespace std;

//把大的放在右边,小的放在左边
int partition(int arr[], int i, int j){
    int temp = arr[i];
    while (i < j){
        while (i<j && temp <= arr[j]){
            j--;
        }
        swap(arr[i], arr[j]);
        while (i<j && temp>=arr[i]){
            i++;
        }
        swap(arr[i], arr[j]);
    }
    return  i;
}

int findMinK(int arr[], int k, int start, int end){
    int q = partition(arr, start, end);

    if (q>k){
        return findMinK(arr, k, start, q - 1);
    }
    else if (q<k){
        return findMinK(arr, k, q + 1, end);
    }
    
    return q;
}


int main()
{
    int arr[] = { 7, 5, 15, 3, 17, 2, 20, 24, 1, 9, 12, 8 };
    int k = 6;
    int len = sizeof(arr) / sizeof(int);
    
    int target = findMinK(arr, k-1,0, len-1);  //第K小的索引是k-1
    cout << arr[target]<<endl;
    
    return 0;
}
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值