在Spark Streaming中对空DStream的判断,最终都是对空RDD的判断。一般有三种方法:计数(RDD.count),分区(RDD.partitions.length),计数+分区(RDD.isEmpty)。
RDD.count
适用于所有类型的DStream,但由于是Action算子,会触发SparkContext.runJob方法,从而导致Job的提交和运行,当数据量较大时,代价也比较大。不推荐。
RDD.partitions.length
通过RDD的分区数来判断,但不适用于KafkaDirectStream。当Batch为空时,KafkaDirectStream的RDD.partitions数组中有KafkaRDDPartition对象,维护了每一个Kafka Topic Partition的fromOffset、untilOffset等。适用于FileDStream、SocketDStream。
RDD.isEmpty
先看看RDD.isEmpty的实现:
def isEmpty(): Boolean = withScope {
//没有分区或没有数据时则返回true
partitions.length == 0 || take(1).length == 0
}
先判断是否有分区,再判断是否有数据。这才是我们想要的。生产中应当用此方法。