作者:VSTECS VMware 渠道业务部 肖晓波
邮箱:Mike.xiao@vstecs.com
各位小伙伴新年好啊!伟仕佳杰小V君向各位拜年啦!祝大家春到家门福满门,步步高升笑颜开!
昨天蹭热度发了一篇《DeepSeek R1模型简单三步部署在8G内存的MacBook上》。如果您也在自己的电脑上部署了R1 1.5B模型,使用起来可能会遇到无法联网搜索、好多问题回答得不尽如人意、好多问题还会出现幻觉......这是正常现象,毕竟这个模型只有1.5B参数量。想要获得更好效果必须部署更大模型,但这对资源的需求就更大了,个人电脑、没有显卡可能就撑不起来了。
转念一想,我能给这个小模型添加一个本地化的知识库,告诉他一些公司内部信息,让他回答问题时从本地知识库中去检索信息后再回答且不美哉?推而广知,这不解决了使用大模型时企业数据安全隐私和安全问题了吗?(本地部署模型可以不连网运行)所以就有了下面的内容。(完整过程大家可以先看上面的连接,再结合下面内容)
先解释一下什么是RAG
RAG是一种结合了信息检索和大模型(LLM)的技术,在对抗大模型幻觉、高效管理用户本地文件以及数据安全保护等方面具有独到的优势。
主要包括:
- 索引:将文档库分割成较短的 Chunk,并通过编码器构建向量索引。
- 检索:根据问题和 chunks 的相似度检索相关文档片段。
- 生成:以检索到的上下文为条件,生成问题的回答。
开干:
昨天我在本地完成了DeepSeek R1 1.5B 模型本地的部署。今天我们还需要下载两个组件:
- Nomic-Embed-Text向量模型
- AnythingLLM
第一步:下载Nomic-Embed-Text向量模型
通过https://ollama.com/library/nomic-embed-text 下载向量模型。
将< ollama pull nomic-embed-text > 复制到本地电脑命令行终端
第二步:下载并安装AnythingLLM
AnythingLLM 是一个功能强大且灵活的开源平台,旨在帮助用户轻松构建和部署基于大型语言模型 (LLM) 的私有化应用程序。它提供了直观的用户界面、丰富的功能以及高度的可定制性,即使是没有任何编程经验的用户也能快速上手:
- https://anythingllm.com/desktop,登录官网。
- 下载对应的版本
安装AnythingLLM
安装完成后,软件可能是英文版的,可以参考下图改为中文界面
第三步:配置AnythingLLM
LLM选择本地部署的Ollama--deepseek-r1:1.5b
向量数据库默认配置就行。
Embedder 首选项一定要如下图:
配置完成保存配置回到对话页面。
第四步:添加知识库
在没有添加知识库文件之前,先问本地部署的R1模型一个关于“DeepSeek Janus-Pro版本功能介绍”的问题。答复明显出现幻觉,如下图。
因为DeepSeek R1发布时,Janus-Pro还没发布,而我本地部署的1.5B又不能连网,所以回答不准确是正常的。
添加关于Janus-Pro的说明文档。文档链接:https://github.com/deepseek-ai/Janus/blob/main/janus_pro_tech_report.pdf
将上传的文档移动至工作区中并选择 “Save and Embed”
再次对上面相同的问题提问,即可得到精准的回复,如下图:
再来个更直观搞笑的例子作为结束。