算法解释
冒泡排序是我们最常见,也是最简单的一种排序。他的核心思想是通过迭代交换相邻的两个数字,不断的把小的数转移到数组的最前面去,把较大的数留在末端。他的时间复杂度是O(n^2)。
冒泡排序有三种实现方法(严格的来说是两种),下面是这三种方法的实现代码:
#include <stdio.h>
#include <iostream>
#include <time.h>
#include <malloc.h>
#include <memory>
#define MAXSIZE 10
#define SUCC 1
#define ERROR -1
#define NULLKEY -32768
typedef int STATUS;
using namespace std;
typedef struct SqlList
{
int a[MAXSIZE];//定义数组的长度为最大值+1,第一个数用作哨兵
int length;//用来记录表的长度
}SqlList;
//交换数据的方法
void swap(SqlList *list,int i,int j) {
int temp = list->a[i];
list->a[i] =list-> a[j];
list->a[j] = temp;
}
/**
简单的交换排序
**/
void BubbleSort0(SqlList *list) {
for (int i = 1;i<list->length;i++)
{
for (int j = i+1;j<list->length;j++)
{
if (list->a[i]>list->a[j])//如果后面的数比前面的小,就要交换
{
swap(list, i, j);
}
}
}
}
/**
没有优化的冒泡排序
**/
void BubbleSort1(SqlList *L ) {
for (int i = 1;i<L->length;i++)
{
for (int j = L->length; j >i; j--)
{
if (L->a[j] <L->a[j-1])
{
swap(L, j, j - 1);
}
}
}
}
/**
优化过的冒泡排序,它比起没有优化的冒泡排序算法,解决了前面已经有一大段数据排序好了,但还要去递归一遍的特殊情况。
比如说我们有一个数组{1,2,3,4,5,6,8,7,9}。很明显前面的数据已经偶读排序好了,只有8,7,9没有排序好,按照没有优化的排序方法,他会把123456这些数据重新比较一遍。
在优化的冒泡排序算法中,我们通过一个lastChangeIndex值来记录最后一次比较的位置,比如说我们在遍历第一次的时候,到6这个数字就已经排序好了,那么lastChangeIndex就是6,我们的i不是简单的i++了,而是直接跳到了6这个位置。所以它比没有优化的冒泡排序要快很多
**/
void BubbleSort2(SqlList *L){
for (int i = 1;i < L->length;i++)
{
int lastChangeIndex = L->length;
for (int j = L->length; j > i; j--)
{
if (L->a[j] < L->a[j - 1])
{
lastChangeIndex = j-1;
swap(L, j, j - 1);
}
}
}
}
void Traveral_List(SqlList list) {
for (int i = 0;i<list.length;i++)
{
cout << list.a[i] << endl;
}
}
int main(void) {
int a[] = {0, 9,1,5,8,3,7,4,6,2 };
SqlList *list = (SqlList*)malloc(sizeof(SqlList));
list->length = 10;
memcpy(list->a,a,10*sizeof(int));
// BubbleSort0(list);
// BubbleSort1(list);
BubbleSort2(list);
Traveral_List(*list);
system("pause");
}