UVA 11081 Strings

题目:   把A的子串和B的子串 穿插 起来,问用多少种方案的到C,  如Now suppose there are two subsequences “abc” and “de”. By combining them you can get the following strings  “abcde”, “abdce”, “abdec”, “adbce”, “adbec”, “adebc”, “dabce”, “dabec”, “daebc” and “deabc”.

分析:

偏难的DP题,参考了相关资料才做出的。 资料里讲的很清楚,关键的理解状态转移方程。

代码:

#include <iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<string>
#include<cmath>
#include<queue>
#include<map>
#include<vector>
#include<cstdlib>
#include<ctime>
using namespace std;
typedef long long LL;
const int INF=0x3f3f3f3f;
const int MOD=10007;
const int maxn=65;
char s1[maxn],s2[maxn],s3[maxn];
int f1[maxn][maxn][maxn],f2[maxn][maxn][maxn],f[maxn][maxn][maxn];
int N,M,L;
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%s%s%s",s1+1,s2+1,s3+1);
        N=strlen(s1+1),M=strlen(s2+1),L=strlen(s3+1);
        for(int i=0; i<=N; i++)
        {
            for(int j=0; j<=M; j++)
            {
                f1[i][j][0]=f2[i][j][0]=f[i][j][0]=1;
            }
        }

        int i,j,k;
        for(k=1; k<=L; k++)
        {
            for(i=0; i<=N; i++)
            {
                for(j=0; j<=M; j++)
                {
                    if(i)
                    {
                        f1[i][j][k] = f1[i-1][j][k];
                        if(s1[i]==s3[k]) f1[i][j][k] += f[i-1][j][k-1];
                        f1[i][j][k] %= MOD;
                    }
                    if(j)
                    {
                        f2[i][j][k] = f2[i][j-1][k];
                        if(s2[j]==s3[k]) f2[i][j][k] += f[i][j-1][k-1];
                        f2[i][j][k] %= MOD;
                    }
                    f[i][j][k] = (f1[i][j][k] + f2[i][j][k]) % MOD;
                }
            }
        }
        printf("%d\n",f[N][M][L]);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值