简单MySQL教程二

天之冰 2017-09-27 22:14

一、7中join查询

1、Join图

简单MySQL教程二

2、建表语句

CREATE TABLE `tbl_dept` (

`id` INT(11) NOT NULL AUTO_INCREMENT,

`deptName` VARCHAR(30) DEFAULT NULL,

`locAdd` VARCHAR(40) DEFAULT NULL,

PRIMARY KEY (`id`)

) ENGINE=INNODB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;

CREATE TABLE `tbl_emp` (

`id` INT(11) NOT NULL AUTO_INCREMENT,

`name` VARCHAR(20) DEFAULT NULL,

`deptId` INT(11) DEFAULT NULL,

PRIMARY KEY (`id`),

KEY `fk_dept_id` (`deptId`)

#CONSTRAINT `fk_dept_id` FOREIGN KEY (`deptId`) REFERENCES `tbl_dept` (`id`)

) ENGINE=INNODB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;

INSERT INTO tbl_dept(deptName,locAdd) VALUES('RD',11);

INSERT INTO tbl_dept(deptName,locAdd) VALUES('HR',12);

INSERT INTO tbl_dept(deptName,locAdd) VALUES('MK',13);

INSERT INTO tbl_dept(deptName,locAdd) VALUES('MIS',14);

INSERT INTO tbl_dept(deptName,locAdd) VALUES('FD',15);

INSERT INTO tbl_emp(NAME,deptId) VALUES('z3',1);

INSERT INTO tbl_emp(NAME,deptId) VALUES('z4',1);

INSERT INTO tbl_emp(NAME,deptId) VALUES('z5',1);

INSERT INTO tbl_emp(NAME,deptId) VALUES('w5',2);

INSERT INTO tbl_emp(NAME,deptId) VALUES('w6',2);

INSERT INTO tbl_emp(NAME,deptId) VALUES('s7',3);

INSERT INTO tbl_emp(NAME,deptId) VALUES('s8',4);

INSERT INTO tbl_emp(NAME,deptId) VALUES('s9',51);

3、7种join语句

1 A、B两表共有

select * from tbl_emp a inner join tbl_dept b on a.deptId = b.id;

2 A、B两表共有+A的独有

select * from tbl_emp a left join tbl_dept b on a.deptId = b.id;

3 A、B两表共有+B的独有

select * from tbl_emp a right join tbl_dept b on a.deptId = b.id;

4 A的独有

select * from tbl_emp a left join tbl_dept b on a.deptId = b.id where b.id is null;

5 B的独有

select * from tbl_emp a right join tbl_dept b on a.deptId = b.id where a.deptId is null; #B的独有

6 AB全有

#MySQL Full Join的实现 因为MySQL不支持FULL JOIN,下面是替代方法

#left join + union(可去除重复数据)+ right join

SELECT * FROM tbl_emp A LEFT JOIN tbl_dept B ON A.deptId = B.id

UNION

SELECT * FROM tbl_emp A RIGHT JOIN tbl_dept B ON A.deptId = B.id

7 A的独有+B的独有

SELECT * FROM tbl_emp A LEFT JOIN tbl_dept B ON A.deptId = B.id WHERE B.`id` IS NULL

UNION

SELECT * FROM tbl_emp A RIGHT JOIN tbl_dept B ON A.deptId = B.id WHERE A.`deptId` IS NULL;

二、索引简介

1、官方定义

索引(Index)是帮助MySQL高效获取数据的数据结构。

可以得到索引的本质:索引是数据结构。

2、排好序的快速查找数据结构

在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种特定方式指向数据。

这样就可以在这些数据结构上实现高级查找算法,这些数据结构就是索引。如下图:

简单MySQL教程二

左边是数据表,一共有两列七条记录,最左边的是数据记录的物理地址

为了加快Col2的查找,可以维护一个右边所示的二叉查找树,每个节点分别包含索引键值和一个指向对应数据记录物理地址的指针,这样就可以运用二叉查找在一定的复杂度内获取到相应数据,从而快速的检索出符合条件的记录。

3、我们平常所说的索引,如果没有特别指明,都是指B树(多路搜索树,并不一定是二叉的)结构组织的索引。其中聚集索引,次要索引,覆盖索引,复合索引,前缀索引,唯一索引默认都是使用B+树索引,统称索引。当然,除了B+树这种类型的索引之外,还有哈稀索引(hash index)等。

4、优势

  • 提高数据检索的效率,降低数据库IO成本。

  • 通过索引列对数据进行排序,降低数据排序的成本,降低了CPU的消耗。

5、劣势

虽然索引大大提高了查询速度,同时却会降低更新表的速度,如对表进行INSERT、UPDATE和DELETE。 因为更新表时,MySQL不仅要保存数据,还要保存一下索引文件每次更新添加了索引列的字段, 都会调整因为更新所带来的键值变化后的索引信息。

6、索引分类

  • 单值索引

一个索引只包含单个列,一个表可以有多个单列索引。

  • 复合索引

一个索引包含多个列。

  • 唯一索引

索引列的值必须唯一,但可以有空值。

7、基本语法

  • 创建

CREATE [UNIQUE ] INDEX indexName ON mytable(columnname(length));

ALTER mytable ADD [UNIQUE ] INDEX [indexName] ON (columnname(length));

注意:如果是CHAR,VARCHAR类型,length可以小于字段实际长度; 如果是BLOB和TEXT类型,必须指定length。

  • 删除

DROP INDEX [indexName] ON mytable;

  • 查看

SHOW INDEX FROM table_nameG;

使用ALTER命令创建索引

有四种方式来添加数据表的索引:

ALTER TABLE tbl_name ADD PRIMARY KEY (column_list): 该语句添加一个主键,这意味着索引值必须是唯一的,且不能为NULL。

ALTER TABLE tbl_name ADD UNIQUE index_name (column_list): 这条语句创建索引的值必须是唯一的(除了NULL外,NULL可能会出现多次)。

ALTER TABLE tbl_name ADD INDEX index_name (column_list): 添加普通索引,索引值可出现多次。

ALTER TABLE tbl_name ADD FULLTEXT index_name (column_list):该语句指定了索引为 FULLTEXT ,用于全文索引。

8、mysql索引结构

  • BTree索引原理

简单MySQL教程二

【初始化介绍】

一颗b+树,浅蓝色的块我们称之为一个磁盘块,可以看到每个磁盘块包含几个数据项(深蓝色所示)和指针(黄色所示),

如磁盘块1包含数据项17和35,包含指针P1、P2、P3,

P1表示小于17的磁盘块,P2表示在17和35之间的磁盘块,P3表示大于35的磁盘块。

真实的数据存在于叶子节点即3、5、9、10、13、15、28、29、36、60、75、79、90、99。

非叶子节点不存储真实的数据,只存储指引搜索方向的数据项,如17、35并不真实存在于数据表中。

【查找过程】

如果要查找数据项29,那么首先会把磁盘块1由磁盘加载到内存,此时发生一次IO,在内存中用二分查找确定29在17和35之间,锁定磁盘块1的P2指针,内存时间因为非常短(相比磁盘的IO)可以忽略不计,通过磁盘块1的P2指针的磁盘地址把磁盘块3由磁盘加载到内存,发生第二次IO,29在26和30之间,锁定磁盘块3的P2指针,通过指针加载磁盘块8到内存,发生第三次IO,同时内存中做二分查找找到29,结束查询,总计三次IO。

真实的情况是,3层的b+树可以表示上百万的数据,如果上百万的数据查找只需要三次IO,性能提高将是巨大的,如果没有索引,每个数据项都要发生一次IO,那么总共需要百万次的IO,显然成本非常非常高。

9、其他索引

  • Hash索引

  • full-text索引

  • R-Tree索引

10、哪些情况需要创建索引

  • 主键自动建立唯一索引

  • 频繁作为查询条件的字段

  • 查询中与其他表关联的字段,外键关系创建索引

  • 在高并发下创建组合索引

  • 查询中排序的字段,排序字段若通过索引去访问将大大提高排序速度

  • 查询中统计或分组字段

11、哪些情况不用建立索引

  • 表记录太少

  • 经常增删改的表

提高了查询速度,同时却会降低更新表的速度,如对表进行INSERT、UPDATE和DELETE。

因为更新表时,MySQL不仅要保存数据,还要保存一下索引文件

  • 数据重复且分布平均的表字段,因此应该只为最经常查询和最经常排序的数据列建立索引。 注意,如果某个数据列包含许多重复的内容,为它建立索引就没有太大的实际效果。

简单MySQL教程二

没有更多推荐了,返回首页

私密
私密原因:
请选择设置私密原因
  • 广告
  • 抄袭
  • 版权
  • 政治
  • 色情
  • 无意义
  • 其他
其他原因:
120
出错啦
系统繁忙,请稍后再试