生成随机数的类Random和ThreadLocalRandom

java里有伪随机型和安全型两种随机数生成器,伪随机生成器根据特定公式将seed转换成新的伪随机数据的一部分,安全随机生成器在底层依赖到操作系统提供的随机事件来生成数据。

安全随机生成器

  • 需要生成加密性强的随机数据的时候才用它
  • 生成速度慢
  • 如果需要生成大量的随机数据,可能会产生阻塞需要等待外部中断事件

而伪随机生成器,只依赖于“seed”的初始值,如果给生成算法提供相同的seed,可以得到一样的伪随机序列。一般情况下,由于它是计算密集型的(不依赖于任何IO设备),因此生成速度更快。以下是伪随机生成器的进化史。

java.util.Random
自1.0就已经存在,是一个线程安全类,理论上可以通过它同时在多个线程中获得互不相同的随机数,这样的线程安全是通过AtomicLong实现的。
Random使用AtomicLong CAS(compare and set)操作来更新它的seed,尽管在很多非阻塞式算法中使用了非阻塞式原语,CAS在资源高度竞争时的表现依然糟糕,后面的测试结果中可以看到它的糟糕表现。

java.util.concurrent.ThreadLocalRandom
1.7增加该类,企图将它和Random结合以克服所有的性能问题,该类继承自Random。

ThreadLocalRandom的主要实现细节:

  • 使用一个普通的long而不是使用Random中的AtomicLong作为seed
  • 不能自己创建ThreadLocalRandom实例,因为它的构造函数是私有的,可以使用它的静态工厂ThreadLocalRandom.current()
  • 它是CPU缓存感知式的,使用8个long虚拟域来填充64位L1高速缓存行

测试

下面进行5种测试:

  1. 一个单独的Random被N个线程共享
  2. ThreadLocal<Random>
  3. ThreadLocalRandom
  4. Random[], 其中每个线程N使用一个数组下标为N的Random
  5. Random[], 其中每个线程N使用一个数组下标为N * 2的Random

所有的测试都使用封装在RandomTask类里的方法,每个方案都说明了如何使用随机生成器。

import java.util.Random;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ThreadLocalRandom;

public class Test_Random {

    private static final long COUNT = 10000000;
    private static final int THREADS = 2;
    public static void main(String[] args) {
        // TODO Auto-generated method stub
        System.out.println("Shared Random");
        testRandom(THREADS, COUNT);
        /*System.out.println("ThreadLocal<Random>");
        testThreadLocal_Random(THREADS, COUNT);
        System.out.println("ThreadLocalRandom");
        testThreadLocalRandom(THREADS, COUNT);
        System.out.println("Shared Random[] with no padding");
        testRandomArray(THREADS, COUNT, 1);
        System.out.println("Shared Random[] with padding");
        testRandomArray(THREADS, COUNT, 2);*/
    }

    private static class RandomTask implements Runnable {
        private final Random rnd;
        protected final int id;
        private final long cnt;
        private final CountDownLatch latch;

        private RandomTask(Random rnd, int id, long cnt,
                CountDownLatch latch) {
            super();
            this.rnd = rnd;
            this.id = id;
            this.cnt = cnt;
            this.latch = latch;
        }

        protected Random getRandom() {
            return rnd;
        }

        @Override
        public void run() {
            try {
                final Random r = getRandom();
                latch.countDown();
                latch.await();
                final long start = System.currentTimeMillis();
                int sum = 0;
                for (long j = 0; j < cnt; j++) {
                    sum += r.nextInt();
                }
                final long time = System.currentTimeMillis() - start;
                System.out.println("Thread #" + id + " Time = " + time / 1000.0 + " sec, sum = " + sum);
            } catch (InterruptedException e) {}
        }
    }

    private static void testRandom(final int threads, final long cnt) {
        final CountDownLatch latch = new CountDownLatch(threads);
        final Random r = new Random(100);
        for (int i = 0; i < threads; ++i) {
            final Thread thread = new Thread(new RandomTask(r, i, cnt, latch));
            thread.start();
        }
    }

    private static void testRandomArray(final int threads, final long cnt, final int padding) {
        final CountDownLatch latch = new CountDownLatch(threads);
        final Random[] rnd = new Random[threads * padding];
        for (int i = 0; i < threads * padding; ++i) {
            rnd[i] = new Random(100);
        }
        for (int i = 0; i < threads; ++i) {
            final Thread thread = new Thread(new RandomTask(rnd[i * padding], i, cnt, latch));
            thread.start();
        }
    }

    private static void testThreadLocalRandom(final int threads, final long cnt) {
        final CountDownLatch latch = new CountDownLatch(threads);
        for (int i = 0; i < threads; ++i) {
            final Thread thread = new Thread(new RandomTask(null, i, cnt, latch) {
                @Override
                protected Random getRandom() {
                    // TODO Auto-generated method stub
                    return ThreadLocalRandom.current();
                }
            });
            thread.start();
        }
    }

    private static void testThreadLocal_Random(final int threads, final long cnt) {
        final CountDownLatch latch = new CountDownLatch(threads);
        final ThreadLocal<Random> rnd = new ThreadLocal<Random>() {

            @Override
            protected Random initialValue() {
                // TODO Auto-generated method stub
                return new Random(100);
            }

        };
        for (int i = 0; i < threads; ++i) {
            final Thread thread = new Thread(new RandomTask(null, i, cnt, latch) {

                @Override
                protected Random getRandom() {
                    // TODO Auto-generated method stub
                    return rnd.get();
                }

            });
            thread.start();
        }
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118

总结:

  • 任何情况下都不要在多个线程间共享一个Random实例,而该把它放入ThreadLocal之中
  • java7在所有情形下都更推荐使用ThreadLocalRandom,它向下兼容已有的代码且运营成本更低
阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

生成随机数的类Random和ThreadLocalRandom

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭