python+django+vue.js个性化电影推荐系统项目实战 在线电影/视频/影视/电视剧推荐系统设计与开发 前后端分离 流行度热点推荐 兴趣标签推荐 协同过滤推荐 基于内容推荐 机器深度学习

python+django+vue.js个性化电影推荐系统项目实战 在线电影/视频/影视/电视剧推荐系统设计与开发 前后端分离 流行度热点推荐 兴趣标签推荐 协同过滤推荐 基于内容推荐 机器学习 深度学习 爬虫MovieRecommenderPy

一、项目简介

1、开发工具和使用技术

Pycharm、vscode集成开发工具,nodejs18.0及以上版本,python3.0及以上版本,mysql5.7及以上版本,navicat数据库管理工具,django后端框架,vue3前端框架,vue-router路由组件,pinia状态管理组件,element plus组件,echarts可视化图表组件等。

2、实现功能

用户首页:http://localhost:5173/
管理员首页:http://localhost:8000/admin
管理员账号:admin 管理员密码:admin

前台用户功能:登录、注册、忘记密码、用户标签、电影筛选、电影榜单、流行度热点推荐、精彩推荐(协同过滤)、标签推荐、相关推荐(基于内容)、电影数据分析、电影点赞、电影收藏、电影评分、电影评论、浏览历史、修改信息、修改密码等;
后台管理员功能:登录、可视化数据分析、电影管理、电影类型管理、用户管理、用户标签管理、点赞管理、收藏管理、评分管理、评论管理、浏览历史管理、管理员管理等。

首页精彩推荐:
用户未登录:基于流行度的热点推荐,推荐所有用户偏好值高的电影;
用户已登录:基于用户的协同过滤推荐算法,用户电影偏好数据,如果没有推荐结果(冷启动和数据稀疏性),用户标签推荐。

电影相关推荐:
基于内容的推荐算法
基于内容的推荐算法原理:
1、使用jieba分词工具提取当前电影的特征文本;
2、计算特征文本的权重值;
3、提取topN个权重值最高的特征文本;
4、推荐电影,包含特征文本的电影。

可视化数据分析:饼状图、词云图、柱状图。

电影数据:爬取豆瓣电影网站的电影数据。

3、开发步骤

一、需求分析
主要是分析需要实现的功能、确定开发工具及技术等。例如:前台用户需要有登录、注册、退出登录、搜索电影、电影评分、个性化推荐等,后台管理员需要有登录、用户管理、电影管理、电影类型管理等。Django后端框架、vue前端框架、mysql数据库技术的选择等。
二、数据库设计
数据库设计使用navicat数据库管理工具,可通过sql语句脚本生成数据库表,也可以直接操作新建表设计表等。注意主外键关联设计,例如:评分记录表需要外键关联用户表和电影表。
三、前端vue框架搭建
在cmd中使用nodejs命令:node create vue@latest,可快速创建一个vue框架项目,同时使用了vue-router路由插件、pinia状态管理插件、axios数据请求插件、echarts可视化插件和element plus等插件,其中element plus的ui组件用于设计html页面。
四、后端django框架搭建
在pycharm中可快速搭建django后端框架。
五、功能开发
具体功能的实现,商业项目开发时,前后端由不同的开发人员实现,并根据开发文档实现数据接口处理,一般的项目可以是设计一个前端页面同时实现一个后端数据接口。首先是进行前台用户首页的开发,其次是电影详情,然后是用户注册、登录等,接着是用户的评分、修改信息等,然后是进行管理员功能的开发,最后是进行前台用户的个性化推荐功能实现。
六、系统测试
主要是进行bug修改,推荐算法测试。

二、项目展示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三、代码展示及运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

专业长期研究java、python推荐算法(基于内容、协同过滤、关联规则、机器学习、深度学习等)、大数据等,欢迎留言、私信互相交流学习,后续会不断更新,欢迎关注。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

linge511873822

亲的鼓励是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值