python+django+vue.js个性化电影推荐系统项目实战 在线电影/视频/影视/电视剧推荐系统设计与开发 前后端分离 流行度热点推荐 兴趣标签推荐 协同过滤推荐 基于内容推荐 机器学习 深度学习 爬虫MovieRecommenderPy
一、项目简介
1、开发工具和使用技术
Pycharm、vscode集成开发工具,nodejs18.0及以上版本,python3.0及以上版本,mysql5.7及以上版本,navicat数据库管理工具,django后端框架,vue3前端框架,vue-router路由组件,pinia状态管理组件,element plus组件,echarts可视化图表组件等。
2、实现功能
用户首页:http://localhost:5173/
管理员首页:http://localhost:8000/admin
管理员账号:admin 管理员密码:admin
前台用户功能:登录、注册、忘记密码、用户标签、电影筛选、电影榜单、流行度热点推荐、精彩推荐(协同过滤)、标签推荐、相关推荐(基于内容)、电影数据分析、电影点赞、电影收藏、电影评分、电影评论、浏览历史、修改信息、修改密码等;
后台管理员功能:登录、可视化数据分析、电影管理、电影类型管理、用户管理、用户标签管理、点赞管理、收藏管理、评分管理、评论管理、浏览历史管理、管理员管理等。
首页精彩推荐:
用户未登录:基于流行度的热点推荐,推荐所有用户偏好值高的电影;
用户已登录:基于用户的协同过滤推荐算法,用户电影偏好数据,如果没有推荐结果(冷启动和数据稀疏性),用户标签推荐。
电影相关推荐:
基于内容的推荐算法
基于内容的推荐算法原理:
1、使用jieba分词工具提取当前电影的特征文本;
2、计算特征文本的权重值;
3、提取topN个权重值最高的特征文本;
4、推荐电影,包含特征文本的电影。
可视化数据分析:饼状图、词云图、柱状图。
电影数据:爬取豆瓣电影网站的电影数据。
3、开发步骤
一、需求分析
主要是分析需要实现的功能、确定开发工具及技术等。例如:前台用户需要有登录、注册、退出登录、搜索电影、电影评分、个性化推荐等,后台管理员需要有登录、用户管理、电影管理、电影类型管理等。Django后端框架、vue前端框架、mysql数据库技术的选择等。
二、数据库设计
数据库设计使用navicat数据库管理工具,可通过sql语句脚本生成数据库表,也可以直接操作新建表设计表等。注意主外键关联设计,例如:评分记录表需要外键关联用户表和电影表。
三、前端vue框架搭建
在cmd中使用nodejs命令:node create vue@latest,可快速创建一个vue框架项目,同时使用了vue-router路由插件、pinia状态管理插件、axios数据请求插件、echarts可视化插件和element plus等插件,其中element plus的ui组件用于设计html页面。
四、后端django框架搭建
在pycharm中可快速搭建django后端框架。
五、功能开发
具体功能的实现,商业项目开发时,前后端由不同的开发人员实现,并根据开发文档实现数据接口处理,一般的项目可以是设计一个前端页面同时实现一个后端数据接口。首先是进行前台用户首页的开发,其次是电影详情,然后是用户注册、登录等,接着是用户的评分、修改信息等,然后是进行管理员功能的开发,最后是进行前台用户的个性化推荐功能实现。
六、系统测试
主要是进行bug修改,推荐算法测试。
二、项目展示




























三、代码展示及运行结果













947

被折叠的 条评论
为什么被折叠?



