keras 模型参数,模型保存,中间结果输出

原创 2018年04月16日 17:46:20
'''
Created on 2018-4-16

'''
import keras
from keras.models import Sequential
from keras.layers import Dense
from keras.models import Model
from  keras.callbacks import ModelCheckpoint,Callback
import numpy as np
import tflearn
import tflearn.datasets.mnist as mnist

x_train, y_train, x_test, y_test = mnist.load_data(one_hot=True)
x_valid = x_test[:5000]
y_valid = y_test[:5000]
x_test = x_test[5000:]
y_test = y_test[5000:]
print(x_valid.shape)
print(x_test.shape)

model = Sequential()
model.add(Dense(units=64, activation='relu', input_dim=784))
model.add(Dense(units=10, activation='softmax'))
model.compile(loss='categorical_crossentropy',
              optimizer='sgd',
              metrics=['accuracy'])
filepath = 'D:\\machineTest\\model-ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5'
# filepath = 'D:\\machineTest\\model-ep{epoch:03d}-loss{loss:.3f}.h5'
checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=1, save_best_only=True, mode='min')
print(model.get_config())
# [{'class_name': 'Dense', 'config': {'bias_regularizer': None, 'use_bias': True, 'kernel_regularizer': None, 'batch_input_shape': (None, 784), 'trainable': True, 'kernel_constraint': None, 'bias_constraint': None, 'kernel_initializer': {'class_name': 'VarianceScaling', 'config': {'scale': 1.0, 'distribution': 'uniform', 'mode': 'fan_avg', 'seed': None}}, 'activity_regularizer': None, 'units': 64, 'dtype': 'float32', 'bias_initializer': {'class_name': 'Zeros', 'config': {}}, 'activation': 'relu', 'name': 'dense_1'}}, {'class_name': 'Dense', 'config': {'bias_regularizer': None, 'use_bias': True, 'kernel_regularizer': None, 'bias_initializer': {'class_name': 'Zeros', 'config': {}}, 'kernel_constraint': None, 'bias_constraint': None, 'kernel_initializer': {'class_name': 'VarianceScaling', 'config': {'scale': 1.0, 'distribution': 'uniform', 'mode': 'fan_avg', 'seed': None}}, 'activity_regularizer': None, 'trainable': True, 'units': 10, 'activation': 'softmax', 'name': 'dense_2'}}]
# model.fit(x_train, y_train, epochs=1, batch_size=128, callbacks=[checkpoint],validation_data=(x_valid, y_valid))
model.fit(x_train, y_train, epochs=1,validation_data=(x_valid, y_valid),steps_per_epoch=10,validation_steps=1)
# score = model.evaluate(x_test, y_test, batch_size=128)
# print(score)
# #获取模型结构状况
# model.summary()
# _________________________________________________________________
# Layer (type)                 Output Shape              Param #   
# =================================================================
# dense_1 (Dense)              (None, 64)                50240(784*64+64(b))     
# _________________________________________________________________
# dense_2 (Dense)              (None, 10)                650(64*10 + 10 )       
# =================================================================
# #根据下标和名称返回层对象
# layer = model.get_layer(index = 0)
# 获取模型权重,设置权重model.set_weights()
weights = np.array(model.get_weights())
print(weights.shape)
# (4,)权重由4部分组成
print(weights[0].shape)
# (784, 64)dense_1 w1
print(weights[1].shape)
# (64,)dense_1 b1
print(weights[2].shape)
# (64, 10)dense_2 w2
print(weights[3].shape)
# (10,)dense_2 b2


# # 保存权重和加载权重
# model.save_weights("D:\\xxx\\weights.h5")
# model.load_weights("D:\\xxx\\weights.h5", by_name=False)#by_name=True,可以根据名字匹配和层载入权重

# 查看中间结果,必须要先声明个函数式模型
dense1_layer_model = Model(inputs=model.input,outputs=model.get_layer('dense_1').output)
out = dense1_layer_model.predict(x_test)
print(out.shape)
# (5000, 64)

# 如果是函数式模型,则可以直接输出
# import keras
# from keras.models import Model
# from  keras.callbacks import ModelCheckpoint,Callback
# import numpy as np
# from keras.layers import Input,Conv2D,MaxPooling2D
# import cv2
# 
# image = cv2.imread("D:\\machineTest\\falali.jpg")
# print(image.shape)
# cv2.imshow("1",image)
# 
# # 第一层conv
# image = image.reshape([-1, 386, 580, 3])
# img_input = Input(shape=(386, 580, 3))
# x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv1')(img_input)
# x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv2')(x)
# x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)
# model = Model(inputs=img_input, outputs=x)
# out = model.predict(image)
# print(out.shape)
# out = out.reshape(193, 290,64)
# image_conv1 = out[:,:,1].reshape(193, 290)
# image_conv2 = out[:,:,20].reshape(193, 290)
# image_conv3 = out[:,:,40].reshape(193, 290)
# image_conv4 = out[:,:,60].reshape(193, 290)
# cv2.imshow("conv1",image_conv1)
# cv2.imshow("conv2",image_conv2)
# cv2.imshow("conv3",image_conv3)
# cv2.imshow("conv4",image_conv4)
# cv2.waitKey(0)

中间结果输出可以查看conv过之后的图像:
原始图像:
这里写图片描述
经过一层conv以后,输出其中4张图片:
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u011311291/article/details/79963831

AARRR运营模型

AARRR是移动应用运营的一种模型,当我们开发出自己的移动应用之后,需要把自己的移动应用推广出去并获取利润,而这个过程我们称之为移动应用的运营。那么如何高效运营移动应用,其中又有那些运营指标,我们本门课程将为您讲解。
  • 2015年01月12日 15:17

keras中如何保存model的数据,以及如何重构模型进行数据预测

keras中首先是训练神经网络模型,在训练好一个不错神经网络模型之后如何对数据进行预测呢? 这里就需要先保存训练好的神经网络模型的结构与参数。接下来的代码展示了如何保存model的结构与训练好的参数,...
  • JohinieLi
  • JohinieLi
  • 2017-04-05 22:47:12
  • 7880

如何在Keras中保存已经训练好的模型

在Keras中我们可以非常优雅地把整个模型(包括已经训练好的参数和神经网络的结构)存储起来,而且这一切都“非常非常”简单,本文主要基于之前搭建好的NN模型来演示在Keras中保存以及载入模型的方法...
  • baimafujinji
  • baimafujinji
  • 2014-12-23 22:22:06
  • 8673

keras中如何保存model的数据,以及如何利用保存的数据

本文利用的demo的是之前写好的: addition_lstm.py, 详细的源代码请看: http://blog.csdn.net/zjm750617105/article/details/5132...
  • zjm750617105
  • zjm750617105
  • 2016-05-05 22:51:11
  • 14798

深度学习【3】keras:保存keras学习好的深度神经网络模型参数为二进制和txt文件

http://blog.csdn.net/linmingan/article/details/50906141由于工程需要,保存为hdf5的keras权值在c/c++中的读取比较不方便。因此将kera...
  • linmingan
  • linmingan
  • 2016-03-16 16:23:20
  • 6209

获取Keras模型中间层输出

使用Keras可以比较方便地搭建一些深度学习网络,获取中间层输出可以帮助理解它是如何运行的。这里使用一个小型的Keras网络,对Caltech101数据集进行图像分类,并获取中间层输出结果,以及手工计...
  • u010632850
  • u010632850
  • 2017-09-10 22:50:11
  • 967

keras中间层输出

https://keras.io/getting-started/faq/#how-can-i-obtain-the-output-of-an-intermediate One simple way...
  • apsvvfb
  • apsvvfb
  • 2018-03-07 17:31:12
  • 287

keras输出中间层结果的2种方法

keras输出中间层结果的2种方法。
  • hahajinbu
  • hahajinbu
  • 2017-09-14 17:20:40
  • 5602

保存Keras训练的模型

保存Keras训练的模型 不推荐使用pickle或cPickle。 (1) 如果只保存模型结构,代码如下: [python] view plain copy ...
  • baoyan2015
  • baoyan2015
  • 2017-03-14 11:58:44
  • 1445

keras实现deepid:flatten中间层、merge多个层次、二维图像的处理、权重的保存与重用、Autoencoder

论文参考:Sun Y, Wang X, Tang X. Deep learning face representation from predicting 10,000 classes[C]//C...
  • mmc2015
  • mmc2015
  • 2016-06-01 21:53:28
  • 3449
收藏助手
不良信息举报
您举报文章:keras 模型参数,模型保存,中间结果输出
举报原因:
原因补充:

(最多只允许输入30个字)