tensorflow中padding的两种类型对比

SAME means that the output feature map has the same spatial dimensions as the input feature map. Zer...
  • fireflychh
  • fireflychh
  • 2017-06-24 15:47:59
  • 339

Tensorflow中padding的两种类型SAME和VALID

padding : SAME和VALID
  • jasonzzj
  • jasonzzj
  • 2016-12-29 16:46:55
  • 17539

tensorflow中padding方式理解:same与valide

对于“VALID”,输出的形状计算如下:  new_height=new_width=⌈(W–F+1)S⌉ 对于“SAME”,输出的形状计算如下:  new_height=n...
  • baidu_27279299
  • baidu_27279299
  • 2017-10-06 22:50:54
  • 154

[AI, 深度学习] tensorflow中padding="SAME"和"VALID"的区别

[AI, 深度学习] tensorflow中padding="SAME"和"VALID"的区别 请参考这里: https://stackoverflow.com/questions/376...
  • H_O_W_E
  • H_O_W_E
  • 2017-08-11 16:28:21
  • 1131

tensorflow:SAME VALID padding

http://stackoverflow.com/questions/37674306/what-is-the-difference-between-same-and-valid-padding-in...
  • u012436149
  • u012436149
  • 2016-12-07 13:30:35
  • 1409

tensorflow_conv2d_max_pool卷积池化padding参数为SAME和VALID的区别

卷积:conv2 "VALID" = without padding: inputs: 1 2 3 4 5 6 7 8 9 10 11 (12 ...
  • fireflychh
  • fireflychh
  • 2017-06-26 19:48:57
  • 4439

tensorflow conv2d的padding解释以及参数解释

1、padding的方式: 说明: 1、摘录自http://stackoverflow.com/questions/37674306/what-is-the-difference-between-...
  • lujiandong1
  • lujiandong1
  • 2016-12-18 16:16:55
  • 15898

CNN中两种padding方式VALID和SAME

CNN之padding:VALID/SAME#参数说明 fileter = [filter_height, filter_width, pre_feature_maps, post_feature_m...
  • suoyan1539
  • suoyan1539
  • 2018-03-19 14:48:20
  • 63

卷积神经网络中same padding 和 valid padding

The TensorFlow Convolution example gives an overview about the difference between SAME and VALID :Fo...
  • szj_huhu
  • szj_huhu
  • 2017-06-28 16:59:36
  • 1463

CNN中的padding

在CNN中,卷积和池化是一种很常见的操作,一般认为通过卷积和池化可以降低输入图像的维度,也可以达到一定的旋转不变性和平移不变性; 而在这种操作过程中,图像(或者特征图)的尺寸是怎么变化的呢? 本文主要...
  • rain6789
  • rain6789
  • 2017-12-08 18:29:35
  • 1357
收藏助手
不良信息举报
您举报文章:TensorFlow中CNN的两种padding方式“SAME”和“VALID”
举报原因:
原因补充:

(最多只允许输入30个字)