解题思路
同一块颜色的贡献值,我们算给最左边的位置。考虑相邻两块中后面一块的贡献值,a为i-1的颜色数量,b为i的颜色数量,除了这两块,其他位置的染色方案种数为c,那么位置i的贡献度为 (max(a,b)−1)∗min(a,b))∗c
a > b:那么在如果i-1的为值染色为[b+1,a]的时候,i不管为什么颜色都可以增加一点贡献值;在[1,b]的时候,i则要避开i-1的颜色才能增加一点贡献,所以总的贡献度为
(a−b)∗b+b∗(b−1)=(a−1)∗b
a < b:不管i-1的位置染什么颜色,i的位置都要避开这种颜色才能增一点贡献,所以
a∗(b−1)
代码
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
const int maxn = 1e6 + 5;
const int mod = 1e9 + 7;
/* 相同块的贡献算给最左边*/
int N, A[maxn], P[maxn];
ll L[maxn], R[maxn];
int solve () {
L[0] = R[N+1] = 1;
for (int i = 1; i <= N; i++) L[i] = L[i-1] * P[i] % mod;
for (int i = N; i >= 1; i--) R[i] = R[i+1] * P[i] % mod;
ll ret = R[1];
for (int i = 2; i <= N; i++) {
ll tmp = (1LL * max(P[i-1], P[i])-1) * min(P[i-1], P[i]) % mod;
ret = (ret + L[i-2] * R[i+1] % mod * tmp % mod) % mod;;
}
return ret;
}
int main () {
int cas;
scanf("%d", &cas);
while (cas--) {
scanf("%d", &N);
for (int i = 1; i <= N; i++) scanf("%d", &A[i]);
sort(A + 1, A + N + 1);
int p = N;
for (int i = 2; i <= N; i += 2) P[i] = A[p--];
for (int i = 1; i <= N; i += 2) P[i] = A[p--];
printf("%d\n", solve());
}
return 0;
}