HDU 4602 Partition 数论 AND 快速幂

一看数据范围就是推公式的题目

公式 

((1 / 8) * m + 1 / 4) * 2 ^ m

其中

m = n - k + 1

注意要用 C++ 和 I64d 为此我贡献了一发 TLE 和一发 OET! QAQ

附代码(31MS):

#include <cmath>
#include <cstdio>
#include <iostream>
using namespace std;
typedef long long LL;
const LL MOD = 1e9 + 7;

LL fastPow(LL n){
    LL a = 2, res = 1;
    while(n){
        if(n & 1){
            res = (res * a) % MOD;
        }
        n >>= 1;
        a = (a * a) % MOD;
    }
    return res;
}

int main(){
    LL n, k, t;
    scanf("%I64d", &t);
    while(t --){
        scanf("%I64d%I64d", &n, &k);
        LL m = n - k + 1;
        if(k > n)
            puts("0");
        else if(k == n)
            puts("1");
        else if(k == n - 1)
            puts("2");
        else if(k == n - 2)
            puts("5");
        else
            printf("%I64d\n", ((m + 2) * fastPow(m - 3)) % MOD);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值