[转]形态学操作:膨胀与腐蚀

图像处理 专栏收录该内容
8 篇文章 0 订阅

形态学操作其实就是改变物体的形状,比如腐蚀就是”变瘦”,膨胀就是”变胖”,看下图就明白了:

12115116-80ee2e028fe12d73.png

形态学操作一般作用于二值化图,来连接相邻的元素或分离成独立的元素。腐蚀和膨胀是针对图片中的白色部分


膨胀

膨胀就是求局部最大值的操作。

按数学方面来说,膨胀或者腐蚀操作就是将图像(或图像的一部分区域,我们称之为A)与核(我们称之为B)进行卷积

核可以是任何的形状和大小,它拥有一个单独定义出来的参考点,我们称其为锚点(anchorpoint)。多数情况下,核是一个小的中间带有参考点和实心正方形或者圆盘,其实,我们可以把核视为模板或者掩码。

而膨胀就是求局部最大值的操作,核B与图形卷积,即计算核B覆盖的区域的像素点的最大值,并把这个最大值赋值给参考点指定的像素。这样就会使图像中的高亮区域逐渐增长。如下图所示,这就是膨胀操作的初衷。

 

12115116-2468cc283d56f3c2.png

右图比左图大一圈

膨胀可以简单理解为将B与A接触的所有背景点合并到A中的过程。


腐蚀

与膨胀相反,腐蚀就是求局部最小值的操作。

12115116-2f6aa7de754e426a.png

右图比左图小一圈


腐蚀可以理解为B的中心(锚点)沿着A的内边界走了一圈。腐蚀也是对高亮部分而言,A区域之外的部分 < A的高亮像素,所里里面被外面取代。A中能完全包含B的像素被留下来了。

 

腐蚀可以简单理解为消除物体A所有边界点的过程。


开运算

12115116-839e7c79ff090d0b.png

 


闭运算

12115116-658980eef0eb52ca.png

 

12115116-d4d7e48520edcdcb.png

如果还是不太理解开运算和闭运算,请看下图

 

12115116-9e9dc2917c9a261a.png

参考资料:
【OpenCV入门教程之十】 形态学图像处理(一): 膨胀与腐蚀
Python+OpenCV教程12:腐蚀与膨胀
形态学腐蚀与膨胀
形态学图像处理(一)

 

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
©️2020 CSDN 皮肤主题: 程序猿惹谁了 设计师:白松林 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值