计算机视觉与深度学习 | 图像匹配算法综述

图像匹配算法综述

图像匹配

      • 图像匹配算法综述
  • 一、算法分类
  • 二、经典算法原理与公式
    • 1. **SIFT (Scale-Invariant Feature Transform)**
    • 2. **ORB (Oriented FAST and Rotated BRIEF)**
    • 3. **模板匹配(归一化互相关,NCC)**
    • 4. **SuperPoint(深度学习)**
  • 三、代码示例
    • 1. **SIFT 特征匹配(OpenCV)**
    • 2. **ORB 特征匹配(OpenCV)**
    • 3. **模板匹配(NCC)**
  • 四、算法对比与选择
  • 五、未来趋势
  • 六、参考文献

图像匹配是计算机视觉中的核心任务,旨在找到两幅或多幅图像之间的对应关系(如关键点、区域或整体内容)。其应用包括目标识别、图像拼接、三维重建、SLAM(即时定位与地图构建)等。以下从算法分类、原理、公式和代码实现角度展开。


一、算法分类

  1. 基于特征的方法

    • 代表算法:SIFT、SURF、ORB、AKAZE、BRISK
    • 特点:提取图像局部特征点(关键点)和描述符,通过描述符相似度匹配。
  2. 基于区域的方法

    • 代表算法:模板匹配(如归一化互相关)、相位相关
    • 特点:直接比较图像局部区域的像素值或频域信息。
  3. 基于深度学习的方法

    • 代表算法:SuperPoint、D2-Net、LoFTR、Siamese Networks
    • 特点:利用神经网络提取鲁棒特征或直接预测匹配关系。

二、经典算法原理与公式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

单北斗SLAMer

代码有情,打赏有爱!谢谢!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值