1. 机器学习基础
1.1 机器学习概念
机器学习是人工智能的一个分支,它使计算机系统能够从数据中学习和做出预测或决策,而无需进行明确的编程。这一概念的核心在于构建算法,这些算法能够从数据中自动提取模式,并利用这些模式进行预测或分类。
- 数据驱动的决策:机器学习模型通过分析历史数据来预测未来事件,这种数据驱动的方法在金融、医疗、营销等领域尤为重要。
- 模式识别:机器学习算法能够识别数据中的复杂模式,这些模式对于人类来说可能难以识别,但在图像识别、语音识别等领域却至关重要。
- 自动化和效率:机器学习可以自动化许多任务,提高效率,减少人为错误,特别是在大数据分析和处理方面。
1.2 机器学习流程
机器学习项目的实施涉及一系列步骤,从数据收集到模型部署,每个步骤都是构建有效机器学习系统的关键。
- 数据收集:收集相关数据是机器学习项目的第一步,数据的质量直接影响模型的性能。
- 数据预处理:包括数据清洗、特征工程等,目的是将原始数据转换为适合机器学习算法处理的格式。
订阅专栏 解锁全文
26

被折叠的 条评论
为什么被折叠?



