CV初阶-基础算法组(2024年)
文章平均质量分 90
学习深度学习计算机视觉领域的基础算法理论与实践,包括图像分类,目标检测,图像分割,CNN模型设计等内容
优惠券已抵扣
余额抵扣
还需支付
¥19.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
阿尔法星球
Coding Every Day {α}
展开
-
深度学习之Pytorch—入门及实战
本章节对 PyTorch 的入门及实战进行了全面而详细的介绍。从 PyTorch 的基本概念到实战案例,再到学习资源的推荐,我们提供了一个系统的学习路径,旨在帮助不同层次的学习者快速上手并深入理解 PyTorch。原创 2024-09-25 09:13:11 · 611 阅读 · 0 评论 -
深度学习之图像分类—理论与实践
图像分类是计算机视觉中的一个核心问题,目标是将图像分配到预定义的类别中。这个问题可以定义为一个监督学习任务,其中模型需要从标记的训练数据中学习如何识别不同的类别。分类任务类型:图像分类任务可以是二分类(如猫与狗的区分)或多分类(如100种不同类别的识别)。数据集:常用的图像分类数据集包括MNIST、CIFAR-10、ImageNet等,这些数据集提供了大量的标记图像用于训练和测试模型。性能指标:准确率、精确率、召回率和F1分数是评估图像分类模型性能的常用指标。原创 2024-09-25 09:11:13 · 305 阅读 · 0 评论 -
深度学习之数据使用—理论实践篇
在本研究报告中,我们全面探讨了深度学习中数据使用的理论和实践。从数据预处理到模型部署,每一步都是构建高效深度学习系统的关键。原创 2024-09-25 09:10:25 · 95 阅读 · 0 评论 -
深度学习之数据使用—理论实践篇
在本研究报告中,我们全面探讨了深度学习中数据使用的理论和实践。从数据预处理到模型部署,每一步都是构建高效深度学习系统的关键。原创 2024-09-25 09:08:40 · 162 阅读 · 0 评论 -
深度学习:基础原理与实践
深度学习作为机器学习的一个分支,已经成为人工智能领域的重要驱动力。从基础的神经元和网络结构,到复杂的卷积神经网络(CNN)、循环神经网络(RNN)和生成对抗网络(GAN),深度学习技术在多个领域展现出了巨大的潜力和应用价值。原创 2024-09-25 09:03:46 · 349 阅读 · 0 评论 -
深度学习之编程基础—Python篇
在本报告中,我们全面探讨了深度学习编程基础的多个方面,从Python编程的基础知识到数学和统计学的基本原理,再到机器学习的核心技术,以及深度学习的核心概念和框架。最后,我们通过实践应用案例展示了深度学习技术的实际价值。原创 2024-09-25 09:03:10 · 692 阅读 · 0 评论 -
深度学习之图像与视频生成GAN—理论与实践
生成对抗网络(GAN)自2014年被提出以来,已经在深度学习领域产生了深远的影响。GAN的核心理论贡献在于其创新的对抗训练机制,通过生成器和判别器的动态博弈,实现了复杂数据分布的有效学习。这一理论不仅推动了图像和视频生成技术的发展,也为无监督学习领域提供了新的可能性。原创 2024-09-25 09:02:37 · 237 阅读 · 0 评论
分享