有关欧拉路跟欧拉回路的题目。
根据图中顶点的度数来确定欧拉路和欧拉回路。
题目要求的是有多少笔画能画完,图不一定是完全连通的,
可以利用这一点将图进行“分块”
如果这个分块中所有顶点的度数均为偶数,可以形成一个欧拉回路,则能有一笔画搞定。
然后是寻找欧拉路,一条欧拉路需要一笔,由欧拉路的性质得。在图中的所有奇度数顶点都是欧拉路产生的。(不解释,不懂的可以看看离散数学)
每两个奇度数结点都会产生一条欧拉路。所以算出图中的所有奇度数结点的个数除2就是图中所有欧拉路所产生的笔画数
对于图中可能产生的孤立结点。题目中最后提示说道“没有一条路与某一结点相连接,小蚂蚁就会忘记这个结点”,(博主英语这么拙计都发现了)所以说孤立结点不作考虑。
根据图中顶点的度数来确定欧拉路和欧拉回路。
题目要求的是有多少笔画能画完,图不一定是完全连通的,
可以利用这一点将图进行“分块”
如果这个分块中所有顶点的度数均为偶数,可以形成一个欧拉回路,则能有一笔画搞定。
然后是寻找欧拉路,一条欧拉路需要一笔,由欧拉路的性质得。在图中的所有奇度数顶点都是欧拉路产生的。(不解释,不懂的可以看看离散数学)
每两个奇度数结点都会产生一条欧拉路。所以算出图中的所有奇度数结点的个数除2就是图中所有欧拉路所产生的笔画数
对于图中可能产生的孤立结点。题目中最后提示说道“没有一条路与某一结点相连接,小蚂蚁就会忘记这个结点”,(博主英语这么拙计都发现了)所以说孤立结点不作考虑。
#include<iostream> #include<cstring> #include<cstdio> using namespace std; const int Maxsize = 100010; int root[Maxsize]; void init_set(int n) { for(int i = 1 ; i <= n ; i++) { root[i] = i; } } int find_set(int n) { while(root[n] != n) { n = root[n]; } return n; } void union_set(int n,int m) { if(find_set(n) != find_set(m)) { root[find_set(n)] = find_set(m); } } int main() { int n,m,ans,cnt,u,v,deg[Maxsize]; int mark[Maxsize]; while(cin>>n>>m) { memset(mark,0,sizeof(mark)); memset(deg,0,sizeof(deg)); init_set(n); while(m--) { cin>>u>>v; deg[u]++; deg[v]++; union_set(u,v); } int i,r; ans = 0; for( i = 1 ; i <= n ; i ++) { if(deg[i]%2 == 1) { r = find_set(i); mark[r] = 1; ans++; } } ans/=2; for( i = 1 ; i <= n ; i++) { if(deg[i] > 0) { r = find_set(i); if(mark[r] == 0 && i == r) { ans++; } } } cout<<ans<<endl; } return 0; }