HDU 3018 Ant Trip(欧拉回路 欧拉通路,一笔画问题)

有关欧拉路跟欧拉回路的题目。
根据图中顶点的度数来确定欧拉路和欧拉回路。
题目要求的是有多少笔画能画完,图不一定是完全连通的,
可以利用这一点将图进行“分块”
如果这个分块中所有顶点的度数均为偶数,可以形成一个欧拉回路,则能有一笔画搞定。
然后是寻找欧拉路,一条欧拉路需要一笔,由欧拉路的性质得。在图中的所有奇度数顶点都是欧拉路产生的。(不解释,不懂的可以看看离散数学)
每两个奇度数结点都会产生一条欧拉路。所以算出图中的所有奇度数结点的个数除2就是图中所有欧拉路所产生的笔画数
对于图中可能产生的孤立结点。题目中最后提示说道“没有一条路与某一结点相连接,小蚂蚁就会忘记这个结点”,(博主英语这么拙计都发现了)所以说孤立结点不作考虑。

#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
const int Maxsize = 100010;
int root[Maxsize];

void init_set(int n)
{
    for(int i = 1 ; i <= n ; i++)
    {
        root[i] = i;
    }
}

int find_set(int n)
{
    while(root[n] != n)
    {
        n = root[n];
    }
    return n;
}

void union_set(int n,int m)
{
    if(find_set(n) != find_set(m))
    {
        root[find_set(n)] = find_set(m);
    }
}

int main()
{
    int n,m,ans,cnt,u,v,deg[Maxsize];
    int mark[Maxsize];
    while(cin>>n>>m)
    {
        memset(mark,0,sizeof(mark));
        memset(deg,0,sizeof(deg));
        init_set(n);
        while(m--)
        {
            cin>>u>>v;
            deg[u]++;
            deg[v]++;
            union_set(u,v);
        }
        int i,r;
        ans = 0;
        for( i = 1 ; i <= n ; i ++)
        {
            if(deg[i]%2 == 1)
            {
                r = find_set(i);
                mark[r] = 1;
                ans++;
            }
        }
        ans/=2;
        for( i = 1 ; i <= n ; i++)
        {
            if(deg[i] > 0)
            {
                r = find_set(i);
                if(mark[r] == 0 && i == r)
                {
                    ans++;
                }
            }
        }
        cout<<ans<<endl;
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值