POJ 1179 Polygon 区间DP

链接:http://poj.org/problem?id=1179

题意:给出一个多边形,多边形的每个顶点是一个数字,每条边是一个运算符号“+”或者“x"。要求的过程如下,手下移除一条边,即这条边不做运算。之后每次移除一条边,将其两边的数字进行对应边的运算,用得到的数字来替代原来的两个点。要求所有边都移除以后得到的最大的答案。

思路:典型的区间DP,在过程中每次操作的处理方式为dp_max[i][j]=dp[i][k]*dp[k+1][j],dp_max[i][j]=dp[i][k]+dp[k+1][j],要开两个数组同时记录[i,k]区间的最大值和最小值,因为两个负数相乘时也可能得到最大值。其中dp_max数组表示的是[i,j]区间内从第i个数开始顺时针操作中得到的最大值。这样dp[i][i-1]就是我们所要的所有操作完毕后得到的最大值。

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<map>
#include<queue>
#include<stack>
#include<vector>
#include<ctype.h>
#include<algorithm>
#include<string>
#define PI acos(-1.0)
#define maxn 55
#define INF 1<<25
typedef long long ll;
using namespace std;
int cal[maxn][3];
int num[maxn];
int tot;
int dp_max[maxn][maxn];
int dp_min[maxn][maxn];
int tt=0;
int aa[maxn];
int init()
{
    for(int i=0; i<tot; i++)
        for(int j=0; j<tot; j++)
        {
            if(i==j)
                dp_max[i][j]=dp_min[i][j]=num[i];
            else
            {
                dp_max[i][j]=-INF;
                dp_min[i][j]=INF;
            }

        }
}
int dp(int i,int j)
{
    for(int k=i; k!=j; k=(k+1)%tot)
    {
        if(dp_max[i][k]==-INF)
            dp(i,k);
        if(dp_max[(k+1)%tot][j]==-INF)
            dp((k+1)%tot,j);
        if(cal[(k+1)%tot][0]=='t')
        {
            dp_max[i][j]=max(dp_max[i][j],dp_max[i][k]+dp_max[(k+1)%tot][j]);
            dp_max[i][j]=max(dp_max[i][j],dp_min[i][k]+dp_min[(k+1)%tot][j]);
            dp_max[i][j]=max(dp_max[i][j],dp_min[i][k]+dp_max[(k+1)%tot][j]);
            dp_max[i][j]=max(dp_max[i][j],dp_max[i][k]+dp_min[(k+1)%tot][j]);
            dp_min[i][j]=min(dp_min[i][j],dp_min[i][k]+dp_min[(k+1)%tot][j]);
            dp_min[i][j]=min(dp_min[i][j],dp_min[i][k]+dp_max[(k+1)%tot][j]);
            dp_min[i][j]=min(dp_min[i][j],dp_max[i][k]+dp_min[(k+1)%tot][j]);
            dp_min[i][j]=min(dp_min[i][j],dp_max[i][k]+dp_max[(k+1)%tot][j]);
        }
        if(cal[(k+1)%tot][0]=='x')
        {
            dp_max[i][j]=max(dp_max[i][j],dp_max[i][k]*dp_max[(k+1)%tot][j]);
            dp_max[i][j]=max(dp_max[i][j],dp_min[i][k]*dp_min[(k+1)%tot][j]);
            dp_max[i][j]=max(dp_max[i][j],dp_min[i][k]*dp_max[(k+1)%tot][j]);
            dp_max[i][j]=max(dp_max[i][j],dp_max[i][k]*dp_min[(k+1)%tot][j]);
            dp_min[i][j]=min(dp_min[i][j],dp_min[i][k]*dp_min[(k+1)%tot][j]);
            dp_min[i][j]=min(dp_min[i][j],dp_min[i][k]*dp_max[(k+1)%tot][j]);
            dp_min[i][j]=min(dp_min[i][j],dp_max[i][k]*dp_min[(k+1)%tot][j]);
            dp_min[i][j]=min(dp_min[i][j],dp_max[i][k]*dp_max[(k+1)%tot][j]);
        }
    }
}
int main()
{
    int ans=-INF;
    scanf("%d",&tot);
    for(int i=0; i<tot; i++)
        scanf("%s%d",cal[i],&num[i]);
    init();
    for(int i=0; i<tot; i++)
    {
        dp(i,(i-1+tot)%tot);
        if(dp_max[i][(i-1+tot)%tot]>ans)
        {
            ans=dp_max[i][(i-1+tot)%tot];
            tt=0;
            aa[tt]=i;
        }
        else if(dp_max[i][(i-1+tot)%tot]==ans)
        {
            aa[++tt]=i;
        }
    }
    printf("%d\n",ans);
    printf("%d",aa[0]+1);
    for(int i=1;i<=tt;i++)
    printf(" %d",aa[i]+1);
    printf("\n");
    return 0;
}


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值