百度之星资格赛 hdu 4826 Labyrinth 动态规划

/*********************

Problem Description
度度熊是一只喜欢探险的熊,一次偶然落进了一个m*n矩阵的迷宫,该迷宫只能从矩阵左上角第一个方格开始走,只有走到右上角的第一个格子才算走出迷宫,每一次只能走一格,且只能向上向下向右走以前没有走过的格子,每一个格子中都有一些金币(或正或负,有可能遇到强盗拦路抢劫,度度熊身上金币可以为负,需要给强盗写欠条),度度熊刚开始时身上金币数为0,问度度熊走出迷宫时候身上最多有多少金币?


Input
输入的第一行是一个整数T(T < 200),表示共有T组数据。
每组数据的第一行输入两个正整数m,n(m<=100,n<=100)。接下来的m行,每行n个整数,分别代表相应格子中能得到金币的数量,每个整数都大于等于-100且小于等于100。


Output
对于每组数据,首先需要输出单独一行”Case #?:”,其中问号处应填入当前的数据组数,组数从1开始计算。
每组测试数据输出一行,输出一个整数,代表根据最优的打法,你走到右上角时可以获得的最大金币数目。


Sample Input
2
3 4
1 -1 1 0
2 -2 4 2
3 5 1 -90
2 2
1 1
1 1


Sample Output
Case #1:
18
Case #2:
4


***********************/


/***********************


因为不能往左走,故很容易使用动态规划实现,因为数据量较小 O(N^3) 的 也能过,就不说了,也比较好写
下面是O(n^2)的
**************************/



//#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <vector>

using namespace std;

typedef long long LL;
typedef long double LD;

const int MaxN=102;
const int INF= 1e9;

int m,n,T;
int data[MaxN][MaxN],dp[MaxN][MaxN],dpp[MaxN][MaxN];

int main()
{
   // cin>>T;
   scanf("%d",&T);
    int cas=0;
    while(T--)
    {
        //cin>>m>>n;
        scanf("%d%d",&m,&n);
        for(int i=0;i<m;i++)
            for(int j=0;j<n;j++)
        {
           // cin>>data[i][j];
           scanf("%d",&data[i][j]);
            dp[i][j]=-INF;
        }
        dp[0][0]=dpp[0][0]=data[0][0];       //初始化
        for(int i=1;i<m;i++) //初始化
           dp[i][0]=dpp[i][0]=dp[i-1][0]+data[i][0]; //初始化
        for(int j=1;j<n;j++)
        {
            for(int i=0;i<m;i++)//right
                dp[i][j]=dpp[i][j]=max(dp[i][j-1]+data[i][j],dp[i][j]);
            for(int i=1;i<m;i++)//down
                dp[i][j]=max(dp[i][j],dp[i-1][j]+data[i][j]);
            for(int i=m-2;i>=0;i--)//up
                dpp[i][j]=max(dpp[i][j],dpp[i+1][j]+data[i][j]);
            for(int i=0;i<m;i++)//comebine
                dp[i][j]=dpp[i][j]=max(dp[i][j],dpp[i][j]);
        }
      //  cout<<"Case #"<<++cas<<":\n";
      printf("Case #%d:\n%d\n",++cas,dp[0][n-1]);
       // cout<<dp[0][n-1]<<endl;
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值