神经网络机器翻译Neural Machine Translation(1): Encoder-Decoder Architecture

端到端的神经网络机器翻译(End-to-End Neural Machine Translation)是近几年兴起的一种全新的机器翻译方法。本文首先将简要介绍传统的统计机器翻译方法以及神经网络在机器翻译中的应用,然后介绍NMT中基本的“编码-解码”框架(Encoder-Decoder)。

转载请注明出处:http://blog.csdn.net/u011414416/article/details/51048994

本文中,详细介绍的工作有:
Kyunghyun Cho, Bart van Merrenboer, Caglar Gulcehre Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase representations using rnn encoder-decoder for statistical machine. In Proceedings of the 2014 Conference on EMNLP, 1724-1734.

Ilya Sutskever, Oriol Vinyals, Quoc V. Le. 2014. Sequence to sequence learning with neural networks. Advances in Neural Information Processing Systems, 4:3104-3112.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
ref1
ref2
ref3

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u011414416/article/details/51048994
个人分类: 机器翻译
上一篇从NN到RNN再到LSTM(3): 长短时记忆LSTM简介及计算
下一篇神经网络机器翻译Neural Machine Translation(2): Attention Mechanism
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭