【CVPR2018】Group Normalization 作者摘要BN是一个深度学习发展的里程碑,给多种网络训练赋能。但当batch变小,由于不准确的batch统计估计,BN的错误率会快速增加。这限制了BN在大模型的应用。本文提出Group Normalization(GN),作为BN的一个简单替换。GN将通道数分成多个组,在每个组计算均值和方差来归一化,计算独立于batch size,且在batchsize的大变化范围内性能稳定。在ImageNet训练的ResNet-50,batch size为2时GN的错误率比BN低10.6%;在batch size.
【CVPR2020】Rethinking Data Augmentation for Image Super-resolution: A Comprehensive Analysis and a Ne 【CVPR2020】Rethinking Data Augmentation for Image Super-resolution: A Comprehensive Analysis and a New Strategy作者摘要数据增广能有效提升深度网络性能,本文对现有的超分数据增广进行了一套综合分析。对于图像重建,像素空间关系很重要。本文提出CutBlur,即将高/低分辨率patch剪切到对应位置,使得模型学习不止学习如何重建,还学习到重建的具体位置。本方法能提升性能,而且在一些low-lev
编译opencv库vs2017+opencv3.4.8+opencv_contrib+cuda10 因为要用到opencv的sift和surf函数,但是opencv3之后的版本已经将这些模块移到opencv_contrib里,因此需要自己编译opencv库。编译折腾了两天,其中还挺多要注意的,下面记录一下:1、gitlab上下载opencv3.4.8和opencv_contrib-3.4.8,注意二者版本要一致;2、安装cmake,我装的3.18.0;3、开始编译:编译时注意选择vs2017,并改为x64,我这默认是x86,不改是编不过的,因为cuda不支持x86; ffmpeg、m
一文读懂深度学习中的各种卷积 写的非常通俗易懂,深入浅出,厘清了很多基本概念。转载自:https://mp.weixin.qq.com/s/C2Gp6oTrv6U72ydIxTW0Mw我们都知道卷积的重要性,但你知道深度学习领域的卷积究竟是什么,又有多少种类吗?研究学者 Kunlun Bai 发布了一篇介绍深度学习的卷积文章,用浅显易懂的方式介绍了深度学习领域的各种卷积及其优势。如果你听说过深度学习中不同种类的卷积(比如 2D / 3D / 1x1 /转置/扩张(Atrous)/空间可分/深度可分/平展/分组/混..
【CVPR2018】ERFNet: Efficient Residual Factorized ConvNet for Real-time Semantic Segmentation 作者摘要语义分割网络可以端到端训练,并准确地在像素级对多种目标分类。本文提出一个可实时运行且结果准确的语义分割架构。本架构核心是一个新层,使用residual connections和factorized convolutions,得以保证准确和高效。在单卡Titan X可达83FPS,Jetson TX1(英伟达GPU开发板)可达7FPS。在公开数据集Cityscapes上准确率类...
【CVPR2018】MobileFaceNets Efficient CNNs for Accurate RealTime Face Verification on Mobile Devices 【CVPR2018】MobileFaceNets Efficient CNNs for Accurate RealTime Face Verification on Mobile Devices作者摘要本文提出一类高效CNN模型MobileFaceNets,参数量小于100w,识别适合手机和嵌入式设备,进行实时准确的人脸验证。首先简单分析通用mobile网络对人人脸验证的缺陷,并且Mo...
【CVPR2017 Best Paper】Densely Connected Convolutional Networks 【CVPR2017 Best Paper】Densely Connected Convolutional Networks作者摘要近年研究表明,如果卷积网络中,输入周围的层与输出周围的层有更短的连接,那么网络可以更深、更准确、训练更高效。本文根据这个观察,提出Dense Convolutional Network(DenseNet),在前馈中每一层都与其他层相连。传统卷积网络,L层有L...
【CVPR2018】FOTS: Fast Oriented Text Spotting with a Unified Network论文阅读笔记 一、作者二、摘要提出一种端到端可训练Fast Oriented Text Spotting网络,同时检测识别。RoIRotate共享检测和识别的卷积特征。本方法没有重复计算消耗,并学习到更多通用特征,因此优于two-stage方法。在ICDAR2015、ICDAR2017MLT和ICDAR2013达到state-of-the-art。达到实时的任意方向text spotting,22....
【CVPR2017】Richer Convolutional Features for Edge Detection论文阅读笔记 一、作者二、方法概括 本文提出一种准确的边缘检测方法,使用丰富的卷积特征richer convolutional features(RCF)。使用VGG16网络,取得state-of-the-art性能,在BSDS500数据集,获得ODS 0.811,125ms每幅,超过人类性能(ODS 0.803)。此外,我们有个加速版本,33ms每幅,ODS 0.806。三、创新点和...
【ICCV2015】Holistically-Nested Edge Detection论文阅读笔记 一、作者二、方法概括 本文提出一种新的边缘检测算法HED(holistically-nested edge detection),有两个特点:1整图进行训练和预测;2多尺度多层次特征学习。 利用全卷积网络(FCN)和deeply-supervised nets(DSN),自动学习丰富的层次化表达。在BSD500(0.782)和NYU Depth(0.746...
caffe中的各种loss函数 转自:https://blog.csdn.net/u012177034/article/details/52144325机器学习的目的就是通过对训练样本输出与真实值不一致的进行惩罚,得到损失Loss,然后采用一定的优化算法对loss进行最小优化,进而得到合理的网络权值。本文介绍Caffe中含有的常见的LossLayer及其参数设置方法Caffe的LossLayer主要由6个:(1)Co...
CNN中感受野的计算 感受野(receptive field)是怎样一个东西呢,从CNN可视化的角度来讲,就是输出featuremap某个节点的响应对应的输入图像的区域就是感受野。比如我们第一层是一个3*3的卷积核,那么我们经过这个卷积核得到的featuremap中的每个节点都源自这个3*3的卷积核与原图像中3*3的区域做卷积,那么我们就称这个featuremap的节点感受野大小为3*3如果再经过poo
python unicode字符串 转载自:https://www.cnblogs.com/gtarcoder/p/5053284.html程序存储、传输、操作字符串时,对代码中写好的字符串或者手动输入的字符串,程序会自动将这些字符串按照某种字符集编码(一般为本地系统字符编码)将字符串转换为字节码,这是字符的“解码”,将显示的字符转化为字节码;程序中显示文字时,计算机读取一串字节,选择合适的字符集(一般为本地系统
深度学习中的卷积与反卷积 转载自:http://blog.csdn.net/panglinzhuo/article/details/75207855卷积与反卷积操作在图像分类、图像分割、图像生成、边缘检测等领域都有很重要的作用。为了讲明白这两种操作,特别是反卷积操作,本文将依照神经网络中的编码器——>解码器——>卷积——>反卷积 的思路来一步步介绍。编码器与解码器神经网络本质上就是一个线性变
C++ explicit关键字详解 转载自:https://www.cnblogs.com/ymy124/p/3632634.html首先, C++中的explicit关键字只能用于修饰只有一个参数的类构造函数。它的作用是表明该构造函数是显示的, 而非隐式的。跟它相对应的另一个关键字是implicit, 意思是隐藏的,类构造函数默认情况下即声明为implicit(隐式)。那么显示声明的构造函数和隐式声
谈谈自己对正则化的一些理解 上学的时候,就一直很好奇,模式识别理论中,常提到的正则化到底是干什么的?渐渐地,听到的多了,看到的多了,再加上平时做东西都会或多或少的接触,有了一些新的理解。1. 正则化的目的:防止过拟合!2. 正则化的本质:约束(限制)要优化的参数。关于第1点,过拟合指的是给定一堆数据,这堆数据带有噪声,利用模型去拟合这堆数据,可能会把噪声数据也给拟合了,这点很致命,一方面会
Caffe中实现卷积的计算 转载自:https://buptldy.github.io/2016/10/01/2016-10-01-im2col/CNN中的卷积操作卷积层是CNNs网络中可以说是最重要的层了,卷积层的主要作用是对输入图像求卷积运算。如下图所示,输入图片的维数为[c0,h0,w0][c0,h0,w0] ;卷积核的维数为[c1,c0,hk,wk][c1,c0,hk,wk
Linux下C语言实现CopyFile Linux下C语言实现文件拷贝/* Function:copy file from file1 to file2 How to execute: ./copyfile file1 file2 (under Linux) Data:2007-05-09*/ #include /*fprintf(),stderr,
AP、mAP多标签图像分类任务的评价方法 多标签图像分类(Multi-label Image Classification)任务中图片的标签不止一个,因此评价不能用普通单标签图像分类的标准,即mean accuracy,该任务采用的是和信息检索中类似的方法—mAP(mean Average Precision)。mAP虽然字面意思和mean accuracy看起来差不多,但是计算方法要繁琐得多,以下是mAP的计算方法:首先用训