date0406/InterfaceTest.java

/*
基类,都是运动员
两个足球倶乐部的人当然也是运动员
运动员当然都有play()方法,只不过实现的方法不一样
而吸烟则是可有可无的功能,不是运动员必须具有的功能,所以吸烟就是扩展功能,用implements去让有该功能的类去实现。

以上描述简单来说,就是父类必须有的功能,就定义成class类,子类去继承,因为子类是该class体系中的一员;
				      子类也可以有自己扩展的功能,该功能不是体系必有的,该扩展功能就定义在interface类中,子类去implements实现。

只有对抽象类和接口类中的抽象方法都实现后,才能建立子类对象。


*/
abstract class Sporter		//运动员必须具备的功能。
{
	abstract void play();
}

interface Smoking			//扩展功能,不是运动员必须具备的功能,因为有的运动员有吸烟,有的运动员没有吸烟
							//所以不能将它放在被继承的类中去。
{
	public abstract void smoke();
}

class FootballClubA extends Sporter implements Smoking	//FootballClubA继承必须有的功能,也有扩展不必须有的功能
{
	public void play()
	{
		System.out.println("play football");
	}

	public void smoke()
	{
		System.out.println("smoke huanghelou");
	}
}

class FootballClubB extends Sporter						//FootballClubB继承必须有的功能
{
	public void play()
	{
		System.out.println("play football");
	}
}

class InterfaceTest 
{
	public static void main(String[] args) 
	{
		FootballClubA foota = new FootballClubA();		//子类把抽象方法都实现后,才能建立子类对象
		FootballClubB footb = new FootballClubB();
	}
}

AI实战-加拿大的工业产品价格指数数据集分析预测实例(含4个源代码+18.20 MB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:4个代码,共38.64 KB;数据大小:1个文件共18.20 MB。 使用到的模块: numpy pandas os sklearn.model_selection.train_test_split tensorflow.keras.models.Sequential tensorflow.keras.layers.Dense sklearn.impute.KNNImputer sklearn.impute.IterativeImputer sklearn.linear_model.LinearRegression matplotlib.pyplot sklearn.datasets.make_blobs sklearn.cluster.DBSCAN sklearn.neighbors.LocalOutlierFactor sklearn.ensemble.IsolationForest sklearn.svm.OneClassSVM sklearn.preprocessing.MinMaxScaler sklearn.preprocessing.StandardScaler sklearn.preprocessing.MaxAbsScaler sklearn.preprocessing.RobustScaler sklearn.preprocessing.PowerTransformer sklearn.preprocessing.QuantileTransformer sklearn.preprocessing.OneHotEncoder sklearn.preprocessing.LabelEncoder category_encoders seaborn sklearn.cluster.KMeans sklearn.metrics.silhouette_score sklearn.decomposition.PCA sklearn.datasets.load_iris scipy.cluster.hierarchy.linkage scipy.cluster.hierarchy.dendrogram sklearn.cluster.AgglomerativeClustering sklearn.mixture.GaussianMixture matplotlib warnings sklearn.metrics.mean_squared_error sklearn.metrics.r2_score plotly.express sklearn.ensemble.RandomForestRegressor sklearn.ensemble.GradientBoostingRegressor catboost.CatBoostRegressor sklearn.metrics.mean_absolute_error sklearn.model_selection.RandomizedSearchCV statsmodels.tsa.arima.model.ARIMA
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值