计量经济分析:计量经济学中的三大检验(LR, Wald, LM)

13 篇文章 28 订阅
7 篇文章 2 订阅

前面用Python底层编写进行计量经济分析(一):多元线性回归(参数估计、T检验、拟合优度、F检验)写过在多元线性回归时的参数检验方法t检验和方程整体的F检验。在分析中和实际情况中,我们可能会假定因素之间可能存在一定的约束条件。我们在意的不仅是x对y的影响,也关心我们的约束条件是否成立。于是产生了检验线性约束条件是否成立的F检验、似然比检验(LR)、沃尔德检验(Wald)和拉格朗日乘子检验(LM)。

似然比检验(LR)、沃尔德检验(Wald)和拉格朗日乘子检验(LM)称为计量经济学的三大检验。都可以用于检验我们设定的约束条件是否成立。其中 似然比检验(LR)需要估计不带约束模型的似然函数值和带约束模型的似然函数值,利用二者比例构造统计量进行假设检验。(对数似然变成差值)。沃尔德检验(Wald)需要估计不带约束模型,并根据约束条件构造统计量,进行假设检验。拉格朗日乘子检验(LM)需要估计带约束模型,并根据约束建立辅助回归,根据辅助回归的可决系数构造统计量进行假设检验(最终统计量有点像前面异方差中的white检验)。三种检验方式是渐进等价的,只是检验方式不同。可以根据估计的复杂度和模型形式选择检验方法。

一、三大检验

1.检验线性约束条件是否成立的F检验
在这里插入图片描述
检验线性约束条件是否成立的F检验的检验逻辑非常的直观。我们估计了有约束和无约束的的两个方程,**如果我们设定的约束条件成立,则两个模型估计出的残差平方应该近似是相等的。**所以F统计量用两个模型的残差平方和除约束条件个数作为分子来构造统计量。

2.似然比检验(LR)
似然比检验与检验线性约束条件是否成立的F检验思想一本上一样的,似然比检验认为如果我们设定的约束条件成立,则两个模型估计出的似然函数值应该近似相等的。
在这里插入图片描述

3.沃尔德检验(Wald)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
虽然沃尔德检验(Wald)只需要估计一个无约束模型,但是需要估计约束条件的方差协方差矩阵,感觉其实还是挺麻烦的。

4.朗格朗日乘子检验(LM)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
感觉构造统计量的方式十分像之前讲过的white检验(之前内容看White检验))。虽然表面上看需要估计带约束的回归,但实际上看还需要估计一个辅助回归。

相比上面这三种方法,还是似然比检验的理论和方法最直观,真香!

后面会用python实现线性约束条件是否成立的F检验和似然比检验,

### Wald检验计量经济学中的应用 #### 定义与原理 Wald检验是一种用于评估参数估计值是否显著不同于某个特定值的统计测试方法。该方法通过构建一个基于最大似然估计的标准误来衡量估计量与其假设值之间的差异程度[^1]。 对于线性回归模型而言,当希望验证某些系数等于零或其他预设数值时可以采用此技术;而在更复杂的设定下比如非嵌套模型比较中也能够发挥作用[^2]。 #### 使用方法 具体来说,在执行一次典型的Wald检验过程中: - 需要先建立原假设H₀(通常是认为某几个自变量对应的β_i=0),并计算出相应的约束条件下得到的最大化对数似然函数L(H₀); - 接着放松这些限制重新求解无任何附加条件下的极大似然估计结果及其对应的目标函数值L(θ̂),这里θ̂表示所有待估参数向量; - 计算两者之差乘以二倍即为wald统计量χ²=-2[L(H₀)- L(θ̂)] ,它渐近服从自由度取决于被测验参数数量的卡方分布Χ²(k)[^3]。 ```python import statsmodels.api as sm from scipy import stats # 假设有如下OLS回归结果对象result_ols hypothesis = 'x1 = 0' test_result = result_ols.wald_test(hypothesis) print(f"Wald Statistic: {test_result.statistic}") print(f"P-value: {test_result.pvalue}") if test_result.pvalue < 0.05: print("拒绝原假设") else: print("接受原假设") ``` #### 应用场景 Wald检验广泛应用于各种经济分析领域内,尤其是在处理多元共线性和异方差等问题时表现出色。此外,在面板数据分析、时间序列建模等方面同样有着不可替代的作用。特别是在涉及因果关系探讨的研究里,借助于广义矩估计(GMM)框架下的改进版形式可以帮助识别潜在机制并量化影响大小。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值