回归和分类的区别

回归算法:

回归算法,就是根据已有数据x及其值y去,选择合适模型(带有未知参数的函数)去训练,求出参数,得出该模型。当来新的数据x'时,根据求得模型算出x'对应的y'


分类算法:

      分类算法,就是根据已有的数据x,及其对应标签类别(常见的二分类(0、1)),选择合适模型(就是参数未知的函数)去训练,得出该模型的参数。然后当给出新的未标签数据后,就可以根据已经训练的模型给该数据进行分类。

### 机器学习中回归分类区别及应用场景 #### 定义目标 在机器学习领域,**回归****分类**是两种主要的任务形式。两者的核心差异在于它们的目标变量类型不同。对于**回归**而言,其目标是预测一个连续值的结果,例如房价、温度或销售额等[^1]。而**分类**则专注于将输入数据分配到预定义的离散类别之一,比如判断邮件是否为垃圾邮件、图像中的物体属于哪一类等[^3]。 #### 数学建模方式 - **回归模型**通常通过建立输入特征输出之间的映射关系来进行预测。这种关系可以是非线性的复杂函数,但在简单的例子中常表现为直线方程的形式(即线性回归)。在线性回归中,我们试图找到一条最佳拟合直线使得误差最小化[^2]。 - 对于**分类问题**来说,虽然也可以采用类似的策略寻找决策边界,但它更关注如何区分不同的类别而不是估计具体的数值大小。某些情况下,可能会利用概率分布来表示样本属于某一特定类别的可能性。 #### 特征处理上的异同点 无论是执行回归还是分类操作,在实际应用之前都需要对原始数据集进行必要的预处理工作,包括但不限于缺失值填补、异常检测剔除以及标准化/归一化转换等等。然而由于最终目的存在本质差别,因此各自侧重点也会有所不同: - 在构建用于完成回归任务的数据管道时,可能更加重视保留尽可能多的信息以便捕捉细微变化趋势; - 而针对分类项目,则往往倾向于简化表达维度从而提高计算效率并减少噪声干扰的影响。 #### 常见算法举例说明 一些经典的监督学习技术既可以应用于解决回归问题也能胜任分类挑战,但更多时候会根据具体需求有所调整优化方向或者引入专门设计的新方法论。以下是几个典型代表案例对比展示: | 类型 | 示例算法 | |------------|------------------------------| | 回归 | 线性回归, 支持向量机(SVR), 随机森林回归器(RandomForestRegressor), 岭回归(Ridge Regression) | | 分类 | K近邻(KNN),逻辑斯谛回归(Logistic Regression),支持向量机(SVM),随机森林分类器(RandomForestClassifier)[^1]| 值得注意的是,“Logistic Regression”尽管名字里含有“regression”,但实际上是一种非常有效的二元或多类别分类工具而非真正意义上的回归手段! #### 性能度量指标选取原则 为了科学合理地评价所开发出来的解决方案效果好坏程度,必须依据实际情况挑选恰当的标准体系作为参照系。下面列举了一些常用的衡量准则供参考考虑: - **回归**: 平均绝对误差(MAE), 均方根误差(RMSE), R²决定系数 etc.. - **分类**: 准确率(Accuracy), 召回率(Recall), F1分数(F1 Score), ROC曲线下面积(AUC-ROC) etc.[^1]. --- ```python from sklearn.linear_model import LinearRegression, LogisticRegression from sklearn.metrics import mean_squared_error, accuracy_score # Example of regression model evaluation using MSE def evaluate_regression(X_train, y_train, X_test, y_test): reg = LinearRegression() reg.fit(X_train, y_train) predictions = reg.predict(X_test) mse = mean_squared_error(y_test, predictions) return mse # Example of classification model evaluation using Accuracy def evaluate_classification(X_train, y_train, X_test, y_test): clf = LogisticRegression(max_iter=200) clf.fit(X_train, y_train) predictions = clf.predict(X_test) acc = accuracy_score(y_test, predictions) return acc ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值