风格迁移学习笔记(2):Universal Style Transfer via Feature Transforms

以下将分为3个部分介绍: 1.提出的background和sense2.proposal network pipeline3.results Background 先来review一下过去的架构. 1.传统的neural style存在两个巨大的弊端: 调参/耗时。即不仅需要我们对neu...

2017-12-29 22:00:34

阅读数:3537

评论数:0

风格迁移学习笔记(1):Multimodal Transfer: A Hierarchical Deep Convolutional Neural Network for Fast

以下将分为3个部分介绍: 效果解決的問題How to solve it? 1.效果: 先来看一下效果 2.解决的问题: 通用框架下进行style transfer时候的笔触差异 原始的方法永远会和style差距较大 解决不同size下的笔触问题,如下图如果只用256的size去训...

2017-12-29 21:58:15

阅读数:2704

评论数:0

Autoencorder理解(7):Variational Autoencoder

以下将分为6个部分介绍: vae结构框架vae与ae区别提及一下为什么要采样如何优化vae应用vae生成/抽象看待vae学习 1.框架: 先来看一下VAE的结构框架,并先预告一下结论: VAE 包括 encoder (模块 1)和 decoder(模块 4) 两个神经网络...

2017-12-27 14:29:44

阅读数:3946

评论数:0

Autoencorder理解(5):VAE(Variational Auto-Encoder,变分自编码器)

reference: http://blog.csdn.net/jackytintin/article/details/53641885 近年,随着有监督学习的低枝果实被采摘的所剩无几,无监督学习成为了研究热点。VAE(Variational Auto-Encoder,变分自编码器)[1,2] 和...

2017-02-13 10:28:32

阅读数:8282

评论数:1

SVM hinge loss / SoftMax cross entropy loss

损失函数(loss function) = 误差部分(loss term) + 正则化部分(regularization term) 1. 误差部分 1.1 gold term,0-1损失函数,记录分类错误的次数 1.2 Hinge loss, 折...

2016-11-28 13:46:16

阅读数:3566

评论数:0

Deep Learning方向的paper整理

http://hi.baidu.com/chb_seaok/item/6307c0d0363170e73cc2cb65 个人阅读的Deep Learning方向的paper整理,分了几部分吧,但有些部分是有交叉或者内容重叠,也不必纠结于这属于DNN还是CNN之类,个人只是大致分了个类。目...

2016-11-28 11:25:34

阅读数:776

评论数:0

Comparative Study of Deep Learning Software Frameworks( caffe、Neon、TensorFlow、Theano、Torch 之比较)

reference:http://blog.csdn.net/u010167269/article/details/51810613 Preface 最近不少人问我哪个开源框架好用,我自己用过 caffe、TensorFlow、Theano、Torch,用过之后虽然有一定的感觉...

2016-11-07 15:45:28

阅读数:815

评论数:0

计算机视觉和图像处理相关的国际会议一览表

Level Conference Name Conference Location Submission Deadline Conference Date Website ★★★★★ SIGG...

2016-10-25 10:14:52

阅读数:766

评论数:0

Training Very Deep Networks--Highway Networks 论文笔记

网上有传言 微软的深度残差学习是抄袭 Highway Networks,只是Highway Networks的一个特例。Highway Networks 的确是先发表的。 http://people.idsia.ch/~rupesh/very_deep_learning/ 有开源代码 ...

2016-07-04 11:39:06

阅读数:2331

评论数:0

Mean Average Precision

reference: https://www.kaggle.com/wiki/MeanAveragePrecision Introduction Parameters: n Suppose there are m missing outbound edges from a use...

2016-07-04 10:20:23

阅读数:1702

评论数:0

deep learning: heat Map

reference: http://blog.csdn.net/liyaohhh/article/details/50990927 图像的heatMap是什么,一副图片的heatmap可以帮助我们在上面检测到想要的object,如下左图所示:               可以直接的看到,人...

2016-06-22 23:46:27

阅读数:3415

评论数:0

Compression Deep Neural Networks With Pruning, Trained Quantization And Huffman Coding

本次介绍的方法为“深度压缩”,文章来自2016ICLR最佳论文 《Deep Compression: Compression Deep Neural Networks With Pruning, Trained Quantization And Huffman Coding 转自:http://b...

2016-06-14 17:31:04

阅读数:1374

评论数:0

Loss和神经网络训练

出处:http://blog.csdn.net/han_xiaoyang/article/details/50521064  声明:版权所有,转载请联系作者并注明出处 1.训练 在前一节当中我们讨论了神经网络静态的部分:包括神经网络结构、神经元类型、数据部分、损失函数部分等。这个部分...

2016-05-19 11:41:29

阅读数:27773

评论数:0

最优化与随机梯度下降

出处:http://blog.csdn.net/han_xiaoyang/article/details/50178505  声明:版权所有,转载请联系作者并注明出处 1. 引言 上一节深度学习与计算机视觉系列(3)_线性SVM与SoftMax分类器中提到两个对图像识别至关重要的概念...

2016-05-19 11:21:42

阅读数:1941

评论数:0

SVM和SoftMax的原理区别对比

出处:http://blog.csdn.net/han_xiaoyang/article/details/49999299  声明:版权所有,转载请注明出处,谢谢。 1. 线性分类器 在深度学习与计算机视觉系列(2)我们提到了图像识别的问题,同时提出了一种简单的解决方法——KNN。然后我们也看...

2016-05-19 10:49:17

阅读数:14342

评论数:1

Deep Reinforcement Learning 基础知识(DQN方面)

recommend page :http://blog.csdn.net/column/details/deeprl.html reference link: http://blog.csdn.net/songrotek/article/details/50580904 Intro...

2016-05-05 14:15:57

阅读数:1290

评论数:0

ImageNet Classification with Deep Convolutional Neural Networks

ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton 摘要 我们训练了一个大型的深度卷积神经网络,来将...

2016-05-04 22:20:07

阅读数:6810

评论数:0

Precision,Recall的定义

原文出自:http://blog.csdn.net/wangran51/article/details/7579100 最近一直在做相关推荐方面的研究与应用工作,召回率与准确率这两个概念偶尔会遇到, 知道意思,但是有时候要很清晰地向同学介绍则有点转不过弯来。 召回...

2016-05-02 16:50:21

阅读数:1400

评论数:0

RCNN学习笔记(10):总结RCNN -> Fast-RCNN -> Faster-RCNN

reference link:http://closure11.com/rcnn-fast-rcnn-faster-rcnn%E7%9A%84%E4%B8%80%E4%BA%9B%E4%BA%8B/ RCNN -> Fast-RCNN -> Faster-RCNN ...

2016-04-29 16:20:27

阅读数:4013

评论数:0

RCNN学习笔记(9):OverFeat:Integrated Recognition, Localization and Detection using Convolutional Networks

Reference link:  http://blog.csdn.net/whiteinblue/article/details/43374195 https://www.zybuluo.com/coolwyj/note/203086#1-classification     本文是纽约大学...

2016-04-28 16:28:28

阅读数:8853

评论数:3

提示
确定要删除当前文章?
取消 删除
关闭
关闭