排序:
默认
按更新时间
按访问量
RSS订阅

召回率(Recall),精确率(Precision),平均正确率(Average_precision(AP) ),交除并(Intersection-over-Union(IoU))

reference: http://lib.csdn.net/article/deeplearning/57869?knId=1726 摘要 在训练YOLO v2的过程中,系统会显示出一些评价训练效果的值,如Recall,IoU等等。为了怕以后忘了,现在把自己对这几种度量方式的理解记录...

2017-02-03 10:31:43

阅读数:3705

评论数:0

深度学习中的数学与技巧(13):神经网络之激活函数

神经网络之激活函数(Activation Function) 本博客仅为作者记录笔记之用,不免有很多细节不对之处。 还望各位看官能够见谅,欢迎批评指正。 更多相关博客请猛戳:http://blog.csdn.net/cyh_24 如需转载,请附上本文链接:http://blog.csd...

2016-10-21 10:46:57

阅读数:1751

评论数:0

深度学习中的数学与技巧(12):机器学习网易公开课笔记

吴恩达(Andrew Ng)07年在网易公开课上的课程。一共20讲。每看完一个视频,我都要总结出基本思想及公式推导过程。今特组成专栏,希望能帮到大家。 http://blog.csdn.net/column/details/ml-ng-record.html

2016-10-21 10:18:38

阅读数:719

评论数:0

深度学习中的数学与技巧(11):dropout原理解读

理解dropout 注意:图片都在github上放着,如果刷不开的话,可以考虑翻墙。 转载请注明:http://blog.csdn.net/stdcoutzyx/article/details/49022443 开篇明义,dropout是指在深度学习网络的训练过程中,对于神经网络单元,按照一...

2016-10-20 19:49:33

阅读数:2414

评论数:0

深度学习中的数学与技巧(10):PCA的数学原理

reference:http://blog.codinglabs.org/articles/pca-tutorial.html PCA(Principal Component Analysis)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主...

2016-10-20 18:25:52

阅读数:1305

评论数:0

深度学习中的数学与技巧(9):协方差矩阵的几何解释

reference:https://www.cnblogs.com/nsnow/p/4758202.html A geometric interpretation of the covariance matrix http://www.visiondummy.com/2014/04...

2016-10-20 17:32:18

阅读数:1454

评论数:0

深度学习中的数学与技巧(8):矩阵及其变换、特征值与特征向量的物理意义

reference:https://www.cnblogs.com/chaosimple/p/3172039.html 最近在做聚类的时候用到了主成分分析PCA技术,里面涉及一些关于矩阵特征值和特征向量的内容,在网上找到一篇对特征向量及其物理意义说明较好的文章,整理下来,分享一下。  ...

2016-10-20 17:23:27

阅读数:1691

评论数:0

深度学习中的数学与技巧(7):特征值和特征向量的几何意义、计算及其性质

一、特征值和特征向量的几何意义 特征值和特征向量确实有很明确的几何意义,矩阵(既然讨论特征向量的问题,当然是方阵,这里不讨论广义特征向量的概念,就是一般的特征向量)乘以一个向量的结果仍是同维数的一个向量。因此,矩阵乘法对应了一个变换,把一个向量变成同维数的另一个向量。 那么变换的效果是什么呢?...

2016-10-20 10:48:03

阅读数:1827

评论数:0

深度学习中的数学与技巧(6): 详解协方差与协方差矩阵计算

协方差的定义   对于一般的分布,直接代入E(X)之类的就可以计算出来了,但真给你一个具体数值的分布,要计算协方差矩阵,根据这个公式来计算,还真不容易反应过来。网上值得参考的资料也不多,这里用一个例子说明协方差矩阵是怎么计算出来的吧。 记住,X、Y是一个列向量,它表示了每种情况下每个样本可能出现...

2016-10-20 10:39:23

阅读数:8252

评论数:2

深度学习中的数学与技巧(5):白化whitening

一、相关理论     白化这个词,可能在深度学习领域比较常遇到,挺起来就是高大上的名词,然而其实白化是一个比PCA稍微高级一点的算法而已,所以如果熟悉PCA,那么其实会发现这是一个非常简单的算法。     白化的目的是去除输入数据的冗余信息。假设训练数据是图像,由于图像中相邻像素之间具有很强的...

2016-10-19 15:47:32

阅读数:2579

评论数:0

深度学习中的数学与技巧(4): BatchNormalization 代码实现

BatchNormalization是神经网络中常用的参数初始化的方法。其算法流程图如下:  我们可以把这个流程图以门电路的形式展开,方便进行前向传播和后向传播:  那么前向传播非常简单,直接给出代码: def batchnorm_forward(x, gamma, beta, eps):...

2016-10-19 15:43:27

阅读数:1963

评论数:0

深度学习中的数学与技巧(3):从Bayesian角度浅析Batch Normalization

前置阅读:http://blog.csdn.net/happynear/article/details/44238541——Batch Norm阅读笔记与实现 前置阅读:http://www.zhihu.com/question/38102762——知乎网友 Deep Learning与B...

2016-10-19 15:41:36

阅读数:1113

评论数:0

深度学习中的数学与技巧(2):《Batch Normalization Accelerating Deep Network Training by Reducing Interna

今年过年之前,MSRA和Google相继在ImagenNet图像识别数据集上报告他们的效果超越了人类水平,下面将分两期介绍两者的算法细节。   这次先讲Google的这篇《Batch Normalization Accelerating Deep Network Training by Redu...

2016-10-19 15:37:09

阅读数:754

评论数:0

深度学习中的数学与技巧(1):BN之利用随机前馈神经网络生成图像观察网络复杂度

零、声明 这是一篇失败的工作,我低估了batch normalization里scale/shift的作用。细节在第四节,请大家引以为戒。 一、前言   关于神经网络的作用有一个解释:它是一个万能函数逼近器。通过BP算法调整权重,在理论上神经网络可以近似出任意的函数。    当然,要近似出来...

2016-10-19 15:28:00

阅读数:1235

评论数:0

MRF马尔科夫随机场详解-PGM系列

转自:http://blog.csdn.net/polly_yang/article/details/9716591          在机器视觉领域,一个图像分析问题通常被定义为建模问题,图像分析的过程就是从计算的观点来求解模型的过程。一个模型除了可以表达成图形的形式外,通常使用一个目标函数来...

2016-09-29 17:56:24

阅读数:3296

评论数:0

FCN/MRF图像语义分割与马克尔夫随机场

参考自知乎作者:困兽 链接:https://zhuanlan.zhihu.com/p/22308032 前言 (呕血制作啊!)前几天刚好做了个图像语义分割的汇报,把最近看的论文和一些想法讲了一下。所以今天就把它总结成文章啦,方便大家一起讨论讨论。本文只是展示了一些比较经典和自己觉得比较不错的结...

2016-09-26 14:15:24

阅读数:4289

评论数:0

深度学习中的数学与技巧(0):优化方法总结比较(sgd/momentum/Nesterov/adagrad/adadelta)

reference:  http://blog.csdn.net/luo123n/article/details/48239963 前言 这里讨论的优化问题指的是,给定目标函数f(x),我们需要找到一组参数x,使得f(x)的值最小。 本文以下内容假设读者已经了解机器学习基本知识,和梯度下降的...

2016-06-22 11:44:33

阅读数:2725

评论数:0

机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用

版权声明:     本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com 前言:     上一次写了关于PCA与LDA的文章,PCA的实现一般...

2016-05-07 17:08:46

阅读数:611

评论数:0

机器学习中的数学(4)-线性判别分析(LDA), 主成分分析(PCA)

版权声明:     本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com 前言:     第二篇的文章中谈到,和部门老大一宁出去o...

2016-05-07 17:07:24

阅读数:443

评论数:0

机器学习中的数学(3)-模型组合(Model Combining)之Boosting与Gradient Boosting

版权声明:     本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com   前言:     本来上一章的结尾提到,准备写写线性分类的问题,...

2016-05-07 17:06:20

阅读数:441

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭