Training Region-based Object Detectors with Online Hard Example Mining(CVPR2016 Oral)

转载自:http://zhangliliang.com/2016/04/13/paper-note-ohem/ Training Region-based Object Detectors with Online Hard Example Mining是CMU实验室和rbg大神合作的pape...

2016-10-21 10:59:39

阅读数:908

评论数:0

施一公:优秀博士如何养成(全文) 清华大学演讲

**************************************************************************** 我们只能自己寻找导师,而不是那些只会酒桌文化的领导。 时间:2012年6月27日 来源:清华大学 (一)    ...

2016-10-20 19:54:03

阅读数:555

评论数:0

Very Deep Convolutional Networks for Large-Scale Image Recognition

reference: http://blog.csdn.net/u014114990/article/details/50715548 本文是牛津大学 visual geometry group(VGG)Karen Simonyan 和Andrew Zisserman 于14年撰写的论文,主...

2016-07-18 10:55:35

阅读数:588

评论数:0

How to design DL model(1):Highway Network & ResNet & ICCV 2015 笔记参考

reference:http://www.tuicool.com/articles/F77Bzu 这几天,关于 ICCV 2015 有一个振奋人心的消息——“微软亚洲研究院视觉计算组的研究员们凭借深层神经网络技术的最新突破,以绝对优势获得 图像分类、图像定位以及图像检测 全部三个主要项目的冠军。同...

2016-07-04 16:22:01

阅读数:8762

评论数:0

Deep Residual Learning for Image Recognition(ResNet)论文笔记

reference:  http://blog.csdn.net/cv_family_z/article/details/50328175 http://blog.csdn.net/yaoxingfu72/article/details/50764087 本文介绍一下2015 ImageNet...

2016-07-04 15:55:55

阅读数:9034

评论数:2

深度学习tracking学习笔记(1):Visual Tracking with Fully Convolutional Networks

reference:http://blog.csdn.net/carrierlxksuper/article/details/48918297 两个属性 1)不同层上的CNN特征可以针对不同的tracking问题。越top层的特征越抽象,并且具有语义信息。这些特征的优势在于区分不同类别,同...

2016-06-23 00:06:50

阅读数:4347

评论数:3

DeepLearningNotes: Network In Network

reference:http://blog.csdn.net/hjimce/article/details/50458190 一、相关理论 本篇博文主要讲解2014年ICLR的一篇非常牛逼的paper:《Network In Network》,过去一年已经有了好几百的引用量,这篇paper...

2016-06-03 17:37:26

阅读数:738

评论数:0

RCNN学习笔记(9):OverFeat:Integrated Recognition, Localization and Detection using Convolutional Networks

Reference link:  http://blog.csdn.net/whiteinblue/article/details/43374195 https://www.zybuluo.com/coolwyj/note/203086#1-classification     本文是纽约大学...

2016-04-28 16:28:28

阅读数:8853

评论数:3

Deep learning学习笔记(2):Visualizing and Understanding Convolutional Networks(ZF-net)

reference link: http://blog.csdn.net/whiteinblue/article/details/43312059 本文是Matthew D.Zeiler 和Rob Fergus于(纽约大学)13年撰写的论文,主要通过Deconvnet(反卷积)来可视化卷积网...

2016-04-28 15:41:43

阅读数:4756

评论数:0

RCNN学习笔记(7):Faster R-CNN 英文论文翻译笔记

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun reference link:http...

2016-04-27 11:51:40

阅读数:24918

评论数:8

RCNN学习笔记(8):Fully Convolutional Networks for Semantic Segmentation(全卷积网络FCN)

论文阅读笔记:Fully Convolutional Networks forSemantic Segmentation 这是CVPR 2015拿到best paper候选的论文。 论文下载地址:Fully Convolutional Networks forSemantic Segmenta...

2016-04-26 02:34:13

阅读数:14865

评论数:1

RCNN学习笔记(6):You Only Look Once(YOLO):Unified, Real-Time Object Detection

这是继RCNN,fast-RCNN 和 faster-RCNN之后,rbg(Ross Girshick)大神挂名的又一大作,起了一个很娱乐化的名字:YOLO。  虽然目前版本还有一些硬伤,但是解决了目前基于DL检测中一个大痛点,就是速度问题。  其增强版本GPU中能跑45fps,简化版本155fp...

2016-04-25 20:56:38

阅读数:21556

评论数:4

RNN学习笔记:Understanding Deep Architectures using a Recursive Convolutional Network

reference link:http://blog.csdn.net/whiteinblue/article/details/43451383  本文是纽约大学Yann LeCun团队中Pierre Sermanet ,David Eigen和张翔等在13年撰写的一篇论文,本文改进了A...

2016-04-24 23:23:34

阅读数:1512

评论数:0

RCNN学习笔记(2):Rich feature hierarchies for accurate object detection and semantic segmentation

基于R-CNN的物体检测 一、相关理论    本篇博文主要讲解2014年CVPR上的经典paper:《Rich feature hierarchies for Accurate Object Detection and Segmenta

2016-04-22 10:57:27

阅读数:21554

评论数:20

RCNN学习笔记(1):Rich feature hierarchies for accurate object detection and semantic segmentation

rcnn主要作用就是用于物体检测,就是首先通过selective search 选择2000个候选区域,这些区域中有我们需要的所对应的物体的bounding-box,然后对于每一个region proposal 都wrap到固定的大小的scale,224*224,对于每一个处理之后的图片,把他都放...

2016-04-22 10:56:04

阅读数:26617

评论数:9

提示
确定要删除当前文章?
取消 删除
关闭
关闭