Autoencorder理解(7):Variational Autoencoder

以下将分为6个部分介绍: vae结构框架vae与ae区别提及一下为什么要采样如何优化vae应用vae生成/抽象看待vae学习 1.框架: 先来看一下VAE的结构框架,并先预告一下结论: VAE 包括 encoder (模块 1)和 decoder(模块 4) 两个神经网络...

2017-12-27 14:29:44

阅读数:3946

评论数:0

Autoencorder理解(6):Traditional AE

以下将分为4个部分介绍: ae基本概念ae训练方式ae特征如何做分类ae变体 1)先来理解autoencoder的基本概念: 自动编码器其实可以理解为是一种尽可能复现输入信号的神经网络,也可以认为自动编码器是可以像pca那样找到可以表征信息的主要成分,只不过这个过程是通过学习得到的. ...

2017-12-27 14:21:41

阅读数:1961

评论数:0

Autoencorder理解(5):VAE(Variational Auto-Encoder,变分自编码器)

reference: http://blog.csdn.net/jackytintin/article/details/53641885 近年,随着有监督学习的低枝果实被采摘的所剩无几,无监督学习成为了研究热点。VAE(Variational Auto-Encoder,变分自编码器)[1,2] 和...

2017-02-13 10:28:32

阅读数:8282

评论数:1

Autoencorder理解(4):生成网络的类比

转完上面三篇来进行总结一下: 其实自动编码器相当于构建一个神经网络让其自己学自己。在学习的过程中,其实是相当于无监督的。因为其source和target图其实就是自己。 那么过程中,通过多层神经网络,最终就会选择编码到一个维度的张量,那么这个张量其实就是类似与白化,pca出来的一个代表这抽象维...

2016-11-21 18:12:11

阅读数:385

评论数:0

Autoencorder理解(3):Traditional AE

Image 以下将分为4个部分介绍: ae基本概念 ae训练方式 ae特征如何做分类 ae变体 1)先来理解autoencoder的基本概念: 自动编码器其实可以理解为是一种尽可能复现输入信号的神经网络,也可以认为自动编码器是可以像pca那样找到可以表征信息的主要成分,只不过这个过程是通过学习得...

2016-11-21 18:03:07

阅读数:977

评论数:0

Autoencoder理解(2): 自动编码器的作用之稀疏编码

如果给定一个神经网络,我们假设其输出与输入是相同的,然后训练调整其参数,得到每一层中的权重。自然地,我们就得到了输入I的几种不同表示(每一层代表一种表示),这些表示就是特征。自动编码器就是一种尽可能复现输入信号的神经网络。为了实现这种复现,自动编码器就必须捕捉可以代表输入数据的最重要的因素,就像P...

2016-11-21 18:01:25

阅读数:4930

评论数:0

Autoencoder理解(1): 传统autoencoder

1)autoencoder autoencoder是一种无监督的学习算法,他利用反向传播算法,让目标值等于输入值。如图所示: Autoencoder尝试学习一个  的函数。也就是说autoencoder尝试逼近一个恒等函数,使得输出接近于输入 。当然为了使这个函数有意义,需要加入一些限制条件...

2016-11-21 17:56:27

阅读数:1903

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭