风格迁移学习笔记(2):Universal Style Transfer via Feature Transforms

以下将分为3个部分介绍: 1.提出的background和sense2.proposal network pipeline3.results Background 先来review一下过去的架构. 1.传统的neural style存在两个巨大的弊端: 调参/耗时。即不仅需要我们对neu...

2017-12-29 22:00:34

阅读数:3537

评论数:0

风格迁移学习笔记(1):Multimodal Transfer: A Hierarchical Deep Convolutional Neural Network for Fast

以下将分为3个部分介绍: 效果解決的問題How to solve it? 1.效果: 先来看一下效果 2.解决的问题: 通用框架下进行style transfer时候的笔触差异 原始的方法永远会和style差距较大 解决不同size下的笔触问题,如下图如果只用256的size去训...

2017-12-29 21:58:15

阅读数:2704

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭