GANs学习系列(8):Deep Convolutional Generative Adversarial Nerworks,DCGAN

【前言】      本文首先介绍生成式模型,然后着重梳理生成式模型(Generative Models)中生成对抗网络(Generative Adversarial Network)的研究与发展。作者按照GAN主干论文、GAN应用性论文、GAN相关论文分类整理了45篇近两年的论文,着重梳理了主干...

2016-11-30 17:16:12

阅读数:2608

评论数:0

GANs学习系列(7): 拉普拉斯金字塔生成式对抗网络Laplacian Pyramid of Adversarial Networks

【前言】      本文首先介绍生成式模型,然后着重梳理生成式模型(Generative Models)中生成对抗网络(Generative Adversarial Network)的研究与发展。作者按照GAN主干论文、GAN应用性论文、GAN相关论文分类整理了45篇近两年的论文,着重梳理了主干...

2016-11-30 16:42:48

阅读数:3225

评论数:1

GANs学习系列(6):条件生成式对抗网络Conditional Generative Adversarial Networks

【前言】      本文首先介绍生成式模型,然后着重梳理生成式模型(Generative Models)中生成对抗网络(Generative Adversarial Network)的研究与发展。作者按照GAN主干论文、GAN应用性论文、GAN相关论文分类整理了45篇近两年的论文,着重梳理了主干论...

2016-11-30 16:33:26

阅读数:11301

评论数:2

生成式模型 future application

我们需要生成(Generative models)模型,这样就能从关联输入移动到输出之外,进行半监督分类(semi-supervised classification)、数据操作(semi-supervised classification)、填空(filling in the blank)、图像...

2016-11-30 16:15:57

阅读数:626

评论数:0

Image Generation Paper Reference

转自http://handong1587.github.io/deep_learning/2015/10/09/image-generation.html Papers Optimizing Neural Networks That Generate Images(2014. Ph...

2016-11-30 16:00:03

阅读数:1133

评论数:0

caffe中的卷积的计算细节和1x1卷积作用

在卷积神经网络中,卷积算是一个必不可少的操作, 下图是一个简单的各层的关系。 可以看出一个很好的扩展的关系,下面是整个卷积的大概的过程 图中上半部分是传统的卷积的操作,下图是一个矩阵的相乘的操作。 下图是在一个卷积层中将卷积操作展开的具体操作过程,他里面按照卷积核的大小取数据然后展开,在同...

2016-11-30 15:23:30

阅读数:5893

评论数:0

LeetCode Index For Reference

http://blog.csdn.net/sinat_17451213/article/category/6168691

2016-11-28 13:47:16

阅读数:251

评论数:0

SVM hinge loss / SoftMax cross entropy loss

损失函数(loss function) = 误差部分(loss term) + 正则化部分(regularization term) 1. 误差部分 1.1 gold term,0-1损失函数,记录分类错误的次数 1.2 Hinge loss, 折...

2016-11-28 13:46:16

阅读数:3566

评论数:0

Deep Learning方向的paper整理

http://hi.baidu.com/chb_seaok/item/6307c0d0363170e73cc2cb65 个人阅读的Deep Learning方向的paper整理,分了几部分吧,但有些部分是有交叉或者内容重叠,也不必纠结于这属于DNN还是CNN之类,个人只是大致分了个类。目...

2016-11-28 11:25:34

阅读数:776

评论数:0

Autoencorder理解(4):生成网络的类比

转完上面三篇来进行总结一下: 其实自动编码器相当于构建一个神经网络让其自己学自己。在学习的过程中,其实是相当于无监督的。因为其source和target图其实就是自己。 那么过程中,通过多层神经网络,最终就会选择编码到一个维度的张量,那么这个张量其实就是类似与白化,pca出来的一个代表这抽象维...

2016-11-21 18:12:11

阅读数:385

评论数:0

Autoencorder理解(3):Traditional AE

Image 以下将分为4个部分介绍: ae基本概念 ae训练方式 ae特征如何做分类 ae变体 1)先来理解autoencoder的基本概念: 自动编码器其实可以理解为是一种尽可能复现输入信号的神经网络,也可以认为自动编码器是可以像pca那样找到可以表征信息的主要成分,只不过这个过程是通过学习得...

2016-11-21 18:03:07

阅读数:977

评论数:0

Autoencoder理解(2): 自动编码器的作用之稀疏编码

如果给定一个神经网络,我们假设其输出与输入是相同的,然后训练调整其参数,得到每一层中的权重。自然地,我们就得到了输入I的几种不同表示(每一层代表一种表示),这些表示就是特征。自动编码器就是一种尽可能复现输入信号的神经网络。为了实现这种复现,自动编码器就必须捕捉可以代表输入数据的最重要的因素,就像P...

2016-11-21 18:01:25

阅读数:4931

评论数:0

Autoencoder理解(1): 传统autoencoder

1)autoencoder autoencoder是一种无监督的学习算法,他利用反向传播算法,让目标值等于输入值。如图所示: Autoencoder尝试学习一个  的函数。也就是说autoencoder尝试逼近一个恒等函数,使得输出接近于输入 。当然为了使这个函数有意义,需要加入一些限制条件...

2016-11-21 17:56:27

阅读数:1904

评论数:0

Tensorflow学习笔记参考—源码分析之最近算法

[python] view plain copy   import numpy as np   import tensorflow as tf      # Import MINST data   import input_data   mnist = inp...

2016-11-11 00:05:11

阅读数:1338

评论数:1

tensorflow中python中with用法的理解

class tf.Session A class for running TensorFlow operations. A Session object encapsulates the environment in which Operation objects are ex...

2016-11-08 14:50:09

阅读数:5193

评论数:0

TensorFlow基本架构解读

TensorFlow 本片博文是参考文献[1]的阅读笔记,特此声明 TensorFlow,以下简称TF,是Google去年发布的机器学习平台,发布以后由于其速度快,扩展性好,推广速度还是蛮快的。江湖上流传着Google的大战略,Android占领了移动端,TF占领神经网络提供AI服...

2016-11-07 16:05:06

阅读数:1886

评论数:0

Comparative Study of Deep Learning Software Frameworks( caffe、Neon、TensorFlow、Theano、Torch 之比较)

reference:http://blog.csdn.net/u010167269/article/details/51810613 Preface 最近不少人问我哪个开源框架好用,我自己用过 caffe、TensorFlow、Theano、Torch,用过之后虽然有一定的感觉...

2016-11-07 15:45:28

阅读数:815

评论数:0

Caffe、TensorFlow、MXnet三个开源库对比

referenece:https://chenrudan.github.io/blog/2015/11/18/comparethreeopenlib.html 最近Google开源了他们内部使用的深度学习框架TensorFlow[1],结合之前开源的MXNet[2]和Caffe[3],对...

2016-11-07 15:39:54

阅读数:605

评论数:0

ubuntu14.04+cuda8.0(gtx1080)下tensorflow的安装

tensorflow的安装 https://www.tensorflow.org/versions/master/get_started/os_setup.html#anaconda-installation 注意系统的python(sudo python pip )和anacon...

2016-11-07 14:29:59

阅读数:841

评论数:0

PyCharm选择性忽略PEP8代码风格警告信息

用了几天的PyCharm,发现确实在编写Python代码上非常好用,但有一点体验不太好,就是代码编写时要按照PEP8代码风格编写,不然会有波浪线的警告信息。解决方法如下: 方法一: 将鼠标移到提示的地方,按alt+Enter,选择忽略(Ignore)这个错误即好。 方法二 ...

2016-11-07 11:09:58

阅读数:2111

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭