风格迁移学习笔记(2):Universal Style Transfer via Feature Transforms

以下将分为3个部分介绍: 1.提出的background和sense2.proposal network pipeline3.results Background 先来review一下过去的架构. 1.传统的neural style存在两个巨大的弊端: 调参/耗时。即不仅需要我们对neu...

2017-12-29 22:00:34

阅读数:3537

评论数:0

风格迁移学习笔记(1):Multimodal Transfer: A Hierarchical Deep Convolutional Neural Network for Fast

以下将分为3个部分介绍: 效果解決的問題How to solve it? 1.效果: 先来看一下效果 2.解决的问题: 通用框架下进行style transfer时候的笔触差异 原始的方法永远会和style差距较大 解决不同size下的笔触问题,如下图如果只用256的size去训...

2017-12-29 21:58:15

阅读数:2704

评论数:0

Autoencorder理解(7):Variational Autoencoder

以下将分为6个部分介绍: vae结构框架vae与ae区别提及一下为什么要采样如何优化vae应用vae生成/抽象看待vae学习 1.框架: 先来看一下VAE的结构框架,并先预告一下结论: VAE 包括 encoder (模块 1)和 decoder(模块 4) 两个神经网络...

2017-12-27 14:29:44

阅读数:3946

评论数:0

Autoencorder理解(6):Traditional AE

以下将分为4个部分介绍: ae基本概念ae训练方式ae特征如何做分类ae变体 1)先来理解autoencoder的基本概念: 自动编码器其实可以理解为是一种尽可能复现输入信号的神经网络,也可以认为自动编码器是可以像pca那样找到可以表征信息的主要成分,只不过这个过程是通过学习得到的. ...

2017-12-27 14:21:41

阅读数:1961

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭